

Welcome to timeboard’s documentation!

timeboard performs calendar calculations over business schedules such as business days or work shifts.

Contents:

	About timeboard

	Installation

	Quick Start Guide

	Data Model

	Making a Timeboard

	Using Preconfigured Calendars

	Doing Calculations

	Common Use Cases

	Release Notes

	Index

Downloads:

	jupyter notebook with common use cases

Links:

	Github: https://github.com/mmamaev/timeboard

	PyPI: https://pypi.python.org/pypi/timeboard

	Documentation (this page): https://timeboard.readthedocs.io/

About timeboard

timeboard creates schedules of work periods and performs calendar calculations over them. You can build standard business day calendars as well as a variety of other schedules, simple or complex.

Examples of problems solved by timeboard:

	If we have 20 business days to complete the project, when will be the deadline?

	If a person was employed from November 15 to December 22 and salary is paid monthly, how many month’s salaries has the employee earned?

	The above-mentioned person was scheduled to work Mondays, Tuesdays, Saturdays, and Sundays on odd weeks, and Wednesdays, Thursdays, and Fridays on even weeks. The question is the same.

	A 24x7 call center operates in shifts of varying length starting at 02:00, 08:00, and 18:00. An operator comes in on every fourth shift and is paid per shift. How many shifts has the operator sat in a specific month?

	With employees entering and leaving a company throughout a year, what was the average annual headcount?

Based on pandas timeseries library, timeboard gives more flexibility than pandas’s built-in business calendars. The key features of timeboard are:

	You can choose any time frequencies (days, hours, multiple-hour shifts, etc.) as work periods.

	You can create sophisticated schedules which can combine periodical patterns, seasonal variations, stop-and-resume behavior, etc.

	There are built-in standard business day calendars (in this version: for USA, UK, and Russia).

Contributing

timeboard is authored and maintained by Maxim Mamaev.

Please use Github issues for the feedback.

License

3-Clause BSD License

Copyright (c) 2018, Maxim Mamaev
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Attribution

Logo design by Olga Mamaeva.

Icon ‘Worker’ made by Freepik from www.flaticon.com is used as an element of the logo.

Installation

Python version support

timeboard is tested with Python versions 2.7, 3.6, 3.7, and 3.8.

Installation

pip install timeboard

The import statement to run all the examples is:

>>> import timeboard as tb

Dependencies

	Package

	versions tested

	pandas [http://pandas.pydata.org/]

	0.22 - 1.0

	numpy [http://www.numpy.org/]

	1.13 - 1.18

	python-dateutil [http://labix.org/python-dateutil]

	2.6.1 - 2.8.1

	six [http://pythonhosted.org/six/]

	1.11 - 1.14

The code is tested by pytest [http://pytest.org/] .

Quick Start Guide

Set up a timeboard

To get started you need to build a timeboard (calendar). The simplest way to do so is to use a preconfigured calendar which is shipped with the package. Let’s take a regular business day calendar for the United States.

>>> import timeboard.calendars.US as US
>>> clnd = US.Weekly8x5()

Note

If you need to build a custom calendar, for example, a schedule of shifts for a 24x7 call center, Making a Timeboard section of the documentation explains this topic in details.

 Data Model

Data Model

Table of Contents

	Timeboard

	Workshift

	Frame and Base Units

	Timeline

	Interval

	Schedule

	Compound Workshifts

	Work time

Timeboard

Timeboard is a representation of a custom business calendar.

More precisely, timeboard is a collection of work schedules based on a specific timeline of workshifts built upon a reference frame.

Note

The terms workshift, frame, timeline, and schedule have exact meanings that are explained below. On the other hand, word calendar is considered rather ambiguous. It is used occasionally as a loose synonym for timeboard when there is no risk of misunderstanding.

 Making a Timeboard

Making a Timeboard

Table of Contents

	Basic case

	Amendments

	Other Timeboard parameters

	Example: Call center shifts with equal duration

	Using Organizer

	Parameters of Organizer

	Example: Business day calendar

	Example: Alternating week schedules

	Undersized and oversized patterns

	Recursive organizing

	Using Marker

	Example: Seasonal schedule

	Using parameter how

	Example: Seasons turning on n-th weekday of month

	Using pattern with memory

	Adjusting labels for work time

	Workshifts of varying length

	Example: Call center closing on weekends

	Caveats

	Not all Marker frequencies are valid

	Alignment of frame may be critical

	Specific days of month

A timeboard is constructed by calling Timeboard() constructor with parameters that define the desired configuration of the calendar. In the simplest case this can be done by a one-liner but most likely you will use auxiliary tools such as Organizer, Marker, and RememberingPattern.

The import statement to run the examples:

>>> import timeboard as tb

It is assumed that you are familiar with Data Model.

Basic case

Timeboard class requires four mandatory parameters for instantiating a timeboard:

>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Oct 2017', end='10 Oct 2017',
... layout=[1, 0, 0])

The first three parameters define the frame:

	base_unit_freqstr

	A pandas-compatible calendar frequency (i.e. ‘D’ for calendar day or ‘8H’ for 8 consecutive hours regarded as one period) which defines timeboard’s base unit. Pandas-native business periods (i.e. ‘BM’) are not supported.

	startTimestamp-like

	A point in time referring to the first base unit of the timeboard.
The point in time can be located anywhere within this base unit.
The value may be a pandas Timestamp, or a string convertible
to Timestamp (i.e. “01 Oct 2017 18:00”), or a datetime object.

	endTimestamp-like

	Same as start but for the last base unit of the timeboard.

The fourth parameter, layout, describes the timeline of workshifts.

In the basic case layout is simply an iterable of workshift labels. In the above example layout=[1, 0, 0] means that each workshift occupies one base unit; the workshift at the first base unit receives label 1, the second workshift receives label 0, the third - again label 0. Further on, label assignment repeats in cycles: the forth workshift will get label 1, the fifth - 0, the sixth - 0, the seventh - 1, and so on. This way the timeline is created.

Under the hood, the timeboard builds default schedule using default selector which returns bool(label). Therefore, under this schedule, the first and then every forth workshift are on duty, and the rest are off duty.

>>> print(clnd)
Timeboard of 'D': 2017-10-01 -> 2017-10-10

 ws_ref start duration end label on_duty
loc
0 2017-10-01 2017-10-01 1 2017-10-01 1.0 True
1 2017-10-02 2017-10-02 1 2017-10-02 0.0 False
2 2017-10-03 2017-10-03 1 2017-10-03 0.0 False
3 2017-10-04 2017-10-04 1 2017-10-04 1.0 True
4 2017-10-05 2017-10-05 1 2017-10-05 0.0 False
5 2017-10-06 2017-10-06 1 2017-10-06 0.0 False
6 2017-10-07 2017-10-07 1 2017-10-07 1.0 True
7 2017-10-08 2017-10-08 1 2017-10-08 0.0 False
8 2017-10-09 2017-10-09 1 2017-10-09 0.0 False
9 2017-10-10 2017-10-10 1 2017-10-10 1.0 True

Amendments

You use the optional parameter amendments to account for any disruptions of the regular pattern of the calendar (such as holidays, etc.).

amendments are a dictionary. The keys are Timestamp-like points in time used to identify workshifts (the point in time may be located anywhere within the workshift, i.e. at noon of a day as in the example below). The values of amendments are labels for the corresponding workshifts overriding the labels which have been set by layout.

>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Oct 2017', end='10 Oct 2017',
... layout=[1, 0, 0],
... amendments={'07 Oct 2017 12:00': 0})
>>> print(clnd)
Timeboard of 'D': 2017-10-01 -> 2017-10-10

 ws_ref start duration end label on_duty
loc
0 2017-10-01 2017-10-01 1 2017-10-01 1 True
1 2017-10-02 2017-10-02 1 2017-10-02 0 False
2 2017-10-03 2017-10-03 1 2017-10-03 0 False
3 2017-10-04 2017-10-04 1 2017-10-04 1 True
4 2017-10-05 2017-10-05 1 2017-10-05 0 False
5 2017-10-06 2017-10-06 1 2017-10-06 0 False
6 2017-10-07 2017-10-07 1 2017-10-07 0 False
7 2017-10-08 2017-10-08 1 2017-10-08 0 False
8 2017-10-09 2017-10-09 1 2017-10-09 0 False
9 2017-10-10 2017-10-10 1 2017-10-10 1 True

Note, that if there are several keys in amendments which refer to the same
workshift, the final label of this workshift would be unpredictable, therefore a KeyError is raised:

>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Oct 2017', end='10 Oct 2017',
... layout=[1, 0, 0],
... amendments={'07 Oct 2017 12:00': 0,
... '07 Oct 2017 15:00': 1})

KeyError Traceback (most recent call last)
 ...
KeyError: "Amendments key '07 Oct 2017 15:00' is a duplicate reference to workshift 6"

Other Timeboard parameters

	workshift_ref{"start" | "end"}, optional (default "start")

	Define what point in time will be used to represent a workshift.
The respective point in time will be returned by Workshift.to_timestamp(). Available options: "start" to use the start time of the workshift, "end" to use the end time.

When printing a timeboard, the workshift reference time is shown in “ws_ref” column.

Workshift reference time is used to determine to which calendar period the workshift belongs if the workshift straddles a boundary of the calendar period. This is used by Interval.count_periods().

	default_namestr, optional

	The name for the default schedule. If not supplied, “on_duty”
is used.

When printing a timeboard, the rightmost column(s) are titled with the names of the schedules and show the workshift duty statuses under the corresponding schedules: True if the workshift is on duty, False otherwise. There is at least one column, showing the default schedule.

	default_selectorfunction, optional

	The selector function for the default schedule. This is
the function which takes one argument - label of a workshift and
returns True if this is an on-duty workshift, False otherwise.
If not supplied, the function that returns bool(label) is used.

	worktime_source{'duration', 'labels'}, optional

	Define what number is used as workshift’s work time: workshift’s
duration (default) or the label. In the latter case, you need to use
numbers as labels and it is up to you to interpret the values. See also Work time section in Data Model.

Example: Call center shifts with equal duration

Operators in a 24x7 call center work in three 8-hour shifts starting at 10:00, 18:00, and 02:00. For each operator one on-duty shift is followed by three off-duty shifts. Hence, four teams of operators are needed. They are designated as ‘A’, ‘B’, ‘C’, and ‘D’.

>>> clnd = tb.Timeboard(base_unit_freq='8H',
... start='01 Oct 2017 02:00', end='05 Oct 2017 01:59',
... layout=['A', 'B', 'C', 'D'])
>>> print(clnd)
Timeboard of '8H': 2017-10-01 02:00 -> 2017-10-04 18:00

 ws_ref ... end label on_duty
loc ...
0 2017-10-01 02:00:00 ... 2017-10-01 09:59:59 A True
1 2017-10-01 10:00:00 ... 2017-10-01 17:59:59 B True
2 2017-10-01 18:00:00 ... 2017-10-02 01:59:59 C True
3 2017-10-02 02:00:00 ... 2017-10-02 09:59:59 D True
4 2017-10-02 10:00:00 ... 2017-10-02 17:59:59 A True
5 2017-10-02 18:00:00 ... 2017-10-03 01:59:59 B True
6 2017-10-03 02:00:00 ... 2017-10-03 09:59:59 C True
7 2017-10-03 10:00:00 ... 2017-10-03 17:59:59 D True
8 2017-10-03 18:00:00 ... 2017-10-04 01:59:59 A True
9 2017-10-04 02:00:00 ... 2017-10-04 09:59:59 B True
10 2017-10-04 10:00:00 ... 2017-10-04 17:59:59 C True
11 2017-10-04 18:00:00 ... 2017-10-05 01:59:59 D True

The "start" and "duration" columns have been omitted to fit the output
to the page

There are two things in this example to point out.

First, to avoid the compound workshifts we use the 8-hour base unit but we need to align the base units with the workshifts, hence the frame starts at 02:00 o’clock.

Note

The duration of each workshift equals to one (base unit). Accordingly, work time of a workshift is also equal to one. To express workshift’s duration or the work time in units of time, multiply it by the length of the base unit.

 Using Preconfigured Calendars

Using Preconfigured Calendars

There are a few preconfigured Timeboards that come with the package. They implement common business day calendars of different countries.

To access calendars of a country you have to import the country module from timeboard.calendars, for example:

>>> import timeboard.calendars.US as US

Then, to obtain a Timeboard implementing a required calendar, call the class for this calendar from the chosen module. Usually, the class takes some country-specific parameters that allow tuning the calendar. For example:

>>> clnd = US.Weekly8x5(do_not_observe = {'black_friday'})

parameters() class method returns the dictionary of the parameters used to instantiate the Timeboard. Of these, the most usable are probably parameters start and end which limit the maximum supported span of the calendar:

>>> params = US.Weekly8x5.parameters()
>>> params['start']
Timestamp('2000-01-01 00:00:00')
>>> params['end']
Timestamp('2020-12-31 23:59:59')

The currently available calendars are listed below. Consult the reference page of the calendar class to review its parameters and examples.

	Country

	Module

	Calendar

	Description

	Russia

	RU

	Weekly8x5

	Official calendar for 5 days x 8 hours
working week with holiday observations

	United Kingdom

	UK

	Weekly8x5

	Business calendar for 5 days x 8 hours
working week with bank holidays

	United States

	US

	Weekly8x5

	Business calendar for 5 days x 8 hours
working week with federal holidays

 Doing Calculations

Doing Calculations

Table of Contents

	Obtaining a Workshift

	Workshift-based calculations

	Determining duty

	Obtaining work time

	Rolling forward and back

	Obtaining an Interval

	Caveats

	Interval-based calculations

	Seeking and counting workshifts

	Itertating over the interval

	Measuring work time

	Relation with another interval

	Counting periods

	Caveats

Calendar calculations are performed either with an individual workshift or with an interval of workshifts.

Also, each calculation is based on a specific schedule in order to reason about duty statuses of workshifts involved.

Therefore, to carry out a calculation you need to obtain either a workshift or an interval and indicate which schedule you will be using.

The import statement to run the examples:

>>> import timeboard as tb

Obtaining a Workshift

Most likely you will want to identify a workshift by a timestamp which represents a point in time somewhere within the workshift. This is done by calling Timeboard.get_workshift() . The result returned will be an instance of Workshift.

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '11 Oct 2017',
... layout=[0, 1, 0, 2])
>>> clnd.get_workshift('01 Oct 2017')
Workshift(1) of 'D' at 2017-10-01

Even simpler, you get the same result by calling the instance of Timeboard which will invoke get_workshift() for you:

>>> clnd('01 Oct 2017')
Workshift(1) of 'D' at 2017-10-01

The argument passed to get_workshift() is Timestamp-like meaning it may be a timestamp, or a string convertible to timestamp, or an object which implement to_timestamp() method.

Alternatively, you can call Workshift() constructor directly if you know the workshift’s position on the timeline:

>>> tb.Workshift(clnd, 1)
Workshift(1) of 'D' at 2017-10-01

Every workshift comes with an attached schedule. This schedule is used in calculations carried out with this workshift unless it is overridden by schedule parameter of the method called to perform the calculation.

By default, a new workshift returned by get_workshift() method or Workshift() constructor receives the default schedule of the timeboard. You may attach a specific schedule to a new workshift by passing it in schedule parameter:

>>> sdl = clnd.add_schedule(name='my_schedule',
... selector=lambda label: label>1)

>>> clnd.get_workshift('01 Oct 2017', schedule=sdl)
Workshift(1, my_schedule) of 'D' at 2017-10-01
>>> tb.Workshift(clnd, 1, sdl)
Workshift(1, my_schedule) of 'D' at 2017-10-01

Note

You cannot obtain a workshift by calling the instance of Timeboard if you want to attach the schedule.` Use get_workshift() only.

 Common Use Cases

Common Use Cases

Table of Contents

	Setting up the calendar

	Determining deadlines

	Generating shift schedule

	Average annual headcount

	Calculating wages and salaries payable

	Periodic salary

	Per-shift wage

	Hourly pay

	Calculating bonus based on time worked

This document contains code snippets for the common use cases of timeboard library. It is also available as a jupyter notebook.

The import statements for all examples are:

[1]:

 import timeboard as tb
 import pandas as pd

Note: We will use pandas dataframes to store the data we work with.

Setting up the calendar

Two types of calendars are used in the examples: a standard business day calendar and a timeboard of shifts in a 24x7 call center. The detailed explanations how to create these or other timeboards are given in Making a Timeboard section. Calculations are performed similarly for any type of timeboard.

To obtain a standard business day calendar we use the built-ins:

[2]:

 import timeboard.calendars.RU as RU
 clnd_ru = RU.Weekly8x5()

 import timeboard.calendars.UK as UK
 clnd_uk = UK.Weekly8x5(country='england')

A sample of the UK calendar clnd_uk is shown below. It starts on Monday, the 17th of April, which was a holiday (Easter Monday), and ends on Monday the 24th, a regular business day.

Note: We take advantage of the nice formatting that jupyter notebooks provide for pandas dataframes. Instead of official print(clnd_uk(('17 Apr 2017', '24 Apr 2017'))), we will convert the interval to dataframe and let jupyter display its contents.

[3]:

 clnd_uk(('17 Apr 2017', '24 Apr 2017')).to_dataframe()

[3]:

 Release Notes

Release Notes

timeboard 0.2.4

Release date: June 25, 2022

Resolved issues

	Fixed changed in import path for Iterables.

	Tested compatibility with Python 3.9, 3.10.

timeboard 0.2.3

Release date: May 01, 2020

Resolved issues

	Incompatibility with the breaking API changes introduced in pandas 1.0

Miscellaneous

	Russian business day calendar has been updated for 2020.

timeboard 0.2.2

Release date: May 01, 2019

Resolved issues

Breaking changes were introduced in pandas versions 0.23 and 0.24

	Pandas 0.23 moved is_subperiod function to another module

	Workaround for pandas issue #26258 (Adding offset to DatetimeIndex is broken)

timeboard 0.2.1

Release date: January 15, 2019

Miscellaneous

	Business day calendars for RU, UK, and US have been updated

timeboard 0.2

Release date: March 01, 2018

New features

	Interval.overlap() (also *) - return the interval that is the intersection of two intervals.

	Interval.what_portion_of() (also /) - calculate what portion of the other interval this interval takes up.

	Interval.workshifts() - return a generator that yields workshifts with the specified duty from the interval.

	Work time calculation: Workshift.worktime(), Interval.worktime()

Miscellaneous

	Performance: building any practical timeboard should take a fraction of a second.

	Documentation: added Common Use Cases section. It is also available as a jupyter notebook.

timeboard 0.1

Release date: February 01, 2018

This is the first release.

 Index

Index

 _
 | A
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | T
 | U
 | V
 | W

_

 	
 	__add__() (timeboard.Workshift method)

 	__div__() (timeboard.Interval method)

 	
 	__mul__() (timeboard.Interval method)

 	__sub__() (timeboard.Workshift method)

 	_Schedule (class in timeboard.core)

A

 	
 	add_schedule() (timeboard.Timeboard method)

C

 	
 	count() (timeboard.Interval method)

 	
 	count_periods() (timeboard.Interval method)

D

 	
 	drop_schedule() (timeboard.Timeboard method)

F

 	
 	first() (timeboard.Interval method)

G

 	
 	get_interval() (timeboard.Timeboard method)

 	
 	get_workshift() (timeboard.Timeboard method)

I

 	
 	Interval (class in timeboard)

 	
 	is_off_duty() (timeboard.Workshift method)

 	is_on_duty() (timeboard.Workshift method)

L

 	
 	last() (timeboard.Interval method)

M

 	
 	Marker (class in timeboard)

N

 	
 	nth() (timeboard.Interval method)

O

 	
 	Organizer (class in timeboard)

 	
 	OutOfBoundsError

 	overlap() (timeboard.Interval method)

P

 	
 	PartialOutOfBoundsError

R

 	
 	RememberingPattern (class in timeboard)

 	
 	rollback() (timeboard.Workshift method)

 	rollforward() (timeboard.Workshift method)

T

 	
 	Timeboard (class in timeboard)

 	to_dataframe() (timeboard.Interval method)

 	(timeboard.Timeboard method)

 	
 	to_timestamp() (timeboard.Workshift method)

 	total_duration() (timeboard.Interval method)

U

 	
 	UnacceptablePeriodError

V

 	
 	VoidIntervalError

W

 	
 	Weekly8x5 (class in timeboard.calendars.RU)

 	(class in timeboard.calendars.UK)

 	(class in timeboard.calendars.US)

 	what_portion_of() (timeboard.Interval method)

 	
 	Workshift (class in timeboard)

 	workshifts() (timeboard.Interval method)

 	worktime() (timeboard.Interval method)

 	(timeboard.Workshift method)

 <no title>

 use_cases notebook

 Preconfigured calendars

Preconfigured calendars

Russia

	
class timeboard.calendars.RU.Weekly8x5

	Russian official calendar for 5 days x 8 hours working week.

Workshifts are calendar days. Workshift labels are the number of working
hours per day: 0 for days off, 8 for regular business days, 7 for some
pre- or post-holiday business days (see also short_eves parameter).

	Parameters:

	
	custom_startTimestamp-like, optional

	Change the first date of the calendar. This date must be within the
default calendar range returned by Weekly8x5.parameters().
By default, the calendar starts on the date defined by ‘start’
element of Weekly8x5.parameters().

	custom_endTimestamp-like, optional

	Change the last date of the calendar. This date must be within the
default calendar range returned by Weekly8x5.parameters().
By default, the calendar ends on the date defined by ‘end’
element of Weekly8x5.parameters().

	do_not_amendbool, optional (default False)

	If set to True, the calendar is created without any amendments,
meaning that effects of holiday observations are not accounted for.

	only_custom_amendmentsbool, optional (default False)

	If set to True, only amendments from custom_amendments are applied
to the calendar.

	custom_amendmentsdict-like

	The alternative amendments if only_custom_amendments is true.
Otherwise, custom_amendments are used to update pre-configured
amendments (add missing or override existing amendments).

	work_on_dec31bool, optional (default True)

	If False, the December 31 is always considered a holiday. Otherwise
use the official status of each December 31, which is the default
behavior.

	short_evesbool, optional (default True)

	If False, consider all business days having 8 working hours.
Otherwise assume the official reduction of the working day to 7
hours on some pre- or post-holiday business days, which is the
default behavior.

	Returns:

	
	Timeboard

	

	Raises:

	
	OutOfBoundsError

	If custom_start or custom_end fall outside the calendar range
returned by Weekly8x5.parameters()

Examples

>>> import timeboard.calendars.RU as RU

Create an official business calendar for the available range of dates:

>>> clnd = RU.Weekly8x5()

Create a business calendar for years 2010-2017, ignoring short eves
and making December 31 always a day off:

>>> clnd = RU.Weekly8x5(custom_start='01 Jan 2010',
... custom_end='31 Dec 2017',
... work_on_dec31 = False,
... short_eves = False)

Inspect the default calendar range:

>>> params = RU.Weekly8x5.parameters()
>>> params['start']
Timestamp('2005-01-01 00:00:00')
>>> params['end']
Timestamp('2018-12-31 23:59:59')

Methods

	parameters()

	(dict) This class method returns a dictionary of Timeboard parameters used for building the calendar.

United Kingdom

	
class timeboard.calendars.UK.Weekly8x5

	British business calendar for 5 days x 8 hours working week.

The calendar takes into account the bank holidays
(https://www.gov.uk/bank-holidays) with regard to the country within
the UK. Selected holidays can be ignored by adding them to exclusions.

Workshifts are calendar days. Workshift labels are the number of working
hours per day: 0 for days off, 8 for business days.

	Parameters:

	
	custom_startTimestamp-like, optional

	Change the first date of the calendar. This date must be within the
default calendar range returned by Weekly8x5.parameters().
By default, the calendar starts on the date defined by ‘start’
element of Weekly8x5.parameters().

	custom_endTimestamp-like, optional

	Change the last date of the calendar. This date must be within the
default calendar range returned by Weekly8x5.parameters().
By default, the calendar ends on the date defined by ‘end’
element of Weekly8x5.parameters().

	do_not_amendbool, optional (default False)

	If set to True, the calendar is created without any amendments,
meaning that effects of holiday observations are not accounted for.

	only_custom_amendmentsbool, optional (default False)

	If set to True, only amendments from custom_amendments are applied
to the calendar.

	only_custom_amendmentsbool, optional (default False)

	If set to True, only amendments from custom_amendments are applied
to the calendar.

	custom_amendmentsdict-like

	The alternative amendments if only_custom_amendments is true.
Otherwise, custom_amendments are used to update pre-configured
amendments (add missing or override existing amendments).

	country{'england', 'northern_ireland', 'scotland'}, optional

	The default is 'england' for England and Wales.

	do_not_observeset, optional

	Holidays to be ignored. The following values are accepted into
the set: 'new_year', 'new_year2' (for the 2nd of January),
'st_patricks', 'good_friday', 'easter_monday',
'early_may', 'spring', 'orangemens'
(for Battle of the Boyne Day on July 12),
'st_andrews', 'christmas', 'boxing', 'royal'
(for one-off celebrations in the royal family).

	long_weekendsbool, optional (default True)

	If false, do not extend weekends if a holiday falls on Saturday or
Sunday.

	Returns:

	
	Timeboard

	

	Raises:

	
	OutOfBoundsError

	If custom_start or custom_end fall outside the calendar range
returned by Weekly8x5.parameters()

Examples

>>> import timeboard.calendars.UK as UK

Create an official business calendar for the available range of dates:

>>> clnd = UK.Weekly8x5()

Create a 2010-2017 business calendar for Scotland but don’t observe
St Andrew’s Day:

>>> clnd = UK.Weekly8x5(custom_start='01 Jan 2010',
... custom_end='31 Dec 2017',
... country = 'scotland',
... do_not_observe = {'st_andrews'})

Inspect the default calendar range:

>>> params = UK.Weekly8x5.parameters()
>>> params['start']
Timestamp('2000-01-01 00:00:00')
>>> params['end']
Timestamp('2019-12-31 23:59:59')

Methods

	parameters()

	(dict) This class method returns a dictionary of Timeboard parameters used for building the calendar.

United States

	
class timeboard.calendars.US.Weekly8x5

	US business calendar for 5 days x 8 hours working week.

The calendar takes into account the federal holidays. The Black
Friday is also considered a holiday. Selected holidays can
be ignored by adding them to exclusions.

Workshifts are calendar days. Workshift labels are the number of working
hours per day: 0 for days off, 8 for business days.

	Parameters:

	
	custom_startTimestamp-like, optional

	Change the first date of the calendar. This date must be within the
default calendar range returned by Weekly8x5.parameters().
By default, the calendar starts on the date defined by ‘start’
element of Weekly8x5.parameters().

	custom_endTimestamp-like, optional

	Change the last date of the calendar. This date must be within the
default calendar range returned by Weekly8x5.parameters().
By default, the calendar ends on the date defined by ‘end’
element of Weekly8x5.parameters().

	do_not_amendbool, optional (default False)

	If set to True, the calendar is created without any amendments,
meaning that effects of holiday observations are not accounted for.

	only_custom_amendmentsbool, optional (default False)

	If set to True, only amendments from custom_amendments are applied
to the calendar.

	custom_amendmentsdict-like

	The alternative amendments if only_custom_amendments is true.
Otherwise, custom_amendments are used to update pre-configured
amendments (add missing or override existing amendments).

	do_not_observeset, optional

	Holidays to be ignored. The following values are accepted into
the set: 'new_year', 'mlk' for Martin Luther King Jr. Day,
'presidents', 'memorial', 'independence', 'labor',
'columbus', 'veterans',
'thanksgiving', 'black_friday', 'christmas',
'xmas_additional_day' for Christmas Eve or the day after Christmas
in certain years only, 'one_off' for one-off events such as State
funeral of George W. Bush senior in 05 Dec 2018.

	long_weekendsbool, optional (default True)

	If false, do not extend weekends if a holiday falls on Saturday or
Sunday.

	Returns:

	
	Timeboard

	

	Raises:

	
	OutOfBoundsError

	If custom_start or custom_end fall outside the calendar range
returned by Weekly8x5.parameters()

Examples

>>> import timeboard.calendars.US as US

Create an official business calendar for the available range of dates:

>>> clnd = US.Weekly8x5()

Create a 2010-2017 business calendar with Black Friday a working day:

>>> clnd = US.Weekly8x5(custom_start='01 Jan 2010',
... custom_end='31 Dec 2017',
... do_not_observe = {'black_friday'})

Inspect the default calendar range:

>>> params = US.Weekly8x5.parameters()
>>> params['start']
Timestamp('2000-01-01 00:00:00')
>>> params['end']
Timestamp('2020-12-31 00:00:00')

Methods

	parameters()

	(dict) This class method returns a dictionary of Timeboard parameters used for building the calendar.

 Exceptions

Exceptions

	
exception timeboard.OutOfBoundsError

	Raise on an attempt to create or access an object which is outside
the bounds of the timeboard or the interval.

	
exception timeboard.PartialOutOfBoundsError

	Raise on an attempt to construct an object which partially lays within
the timeboard but extends beyond the timeboard’s bounds.

	
exception timeboard.VoidIntervalError

	Raise on an attempt to create an empty interval. This includes the case
creating an interval from a calendar period that is too short to contain
a workshift.

	
exception timeboard.UnacceptablePeriodError

	Raise on an attempt to pass an unsupported or unacceptable calendar
frequency.

 Interval class

Interval class

	
class timeboard.Interval(timeboard, bounds, schedule=None)

	A sequence of workshifts within the timeboard.

Interval is defined by two positions on the timeline which are
the zero-based sequence numbers of the first and the last workshifts
of the interval. An interval can contain one or more workshifts; the
empty interval is not allowed.

Duty status of the workshifts within the interval is interpreted by the
given schedule.

In addition to the methods defined for intervals, you can use interval
as a generator that yields the workshifts of the interval, from the
first to the last.

	Parameters:

	
	timeboardTimeboard

	

	boundstuple(int, int) or tuple(Workshift, Workshift)

	The two elements of bounds provide the positions of the first and
the last workshifts of the interval within the timeline. The element’s
type is either non-negative integer or Workshift.

	schedule_Schedule, optional

	If not given, the timeboard’s default schedule is used.

	Raises:

	
	VoidIntervalError

	If bounds are in the reverse order.

	OutOfBoundsError

	If any of bounds points outside the timeboard.

See also

	Timeboard.get_interval

	provides convenient ways to instantiate an interval instead of calling Interval() constructor directly. Moreover, in many cases, you can shortcut a get_interval() call by calling the instance of Timeboard itself.

	workshifts

	Return the generator that yields workshifts with the specified duty.

 Organizer class

Organizer class

	
class timeboard.Organizer(marker=None, marks=None, structure=None)

	Specification of timeline’s layout.

Organizer contains rules which define the transformation
of a timeboard’s reference frame into a timeline of workshifts.
There are two phases in this process. Firstly, the frame is partitioned
into chunks called spans. Secondly, workshifts of each span receive labels
according to some labeling pattern.

Spans begin on base units referred to by points in
time called marks. The locations of the marks are defined in
Organizer by either marker or marks parameter.

Given marker parameter, marks are computed according to
the rules set by a Marker passed as the value of
marker.

If marks parameter is provided instead, it is interpreted as a list
of explicitly specified points in time which will serve as marks.

One and only one of marker or marks parameters must be supplied.

The second parameter of Organizer, structure, tells how
to organize the spans. structure is an iterable and its elements
are mapped onto the spans: the first element of structure is applied to
the first span, the second element - to the second span, and so on.

Each element of structure must be one of the following:

	another Organizer,

	a pattern (an iterable of workshift labels),

	a single label.

If an element of structure is an Organizer, it is used
to recursively partition this span into sub-spans.

Pattern is an iterable of workshift labels, such as an explicit list
of labels, or an iterator, such as an instance of
RememberingPattern. If an element of structure is a pattern,
each base unit of the span becomes a workshift.
The labels for these workshifts are taken from the pattern. If the pattern
is empty, the workshifts of the span retain the default labeling
of the timeline.

If an element of structure is some other single value, it is considered
a label. In this case, the whole span becomes a single workshift which
receives this label. Such a compound workshift comprises several base units
(unless the span itself consists of a single base unit).

Once structure is exhausted but there are untreated spans remaining,
structure is re-enacted in cycles. The same approach applies to patterns
producing workshift labels.

If structure is empty, no organizing occurs. The timeline retains the
default label for every workshift and workshifts coincide with base units.

	Parameters:

	
	markerMarker or str

	If a string is given, it must be a pandas-compatible calendar
frequency (accepts the same kind of values as base_unit_freq of
timeboard). Under the hood marker=freq is silently converted
to marker=Marker(each=freq).

	marksIterable of Timestamp-like

	Parameters marker and marks are mutually exclusive.

	structureIterable

	An element of structure may be one of the following:

	an Organizer,

	a pattern (iterable or iterator of labels),

	a single label.

A RememberingPattern may be used both as an element
of structure or as an entire structure.

	Raises:

	
	ValueError

	If both marker and marks are specified.

See also

	Marker

	Define rules to calculate locations of marks upon the frame.

	RememberingPattern

	Keep track of assigned labels across invocations.

 Timeboard class

Timeboard class

	
class timeboard.Timeboard(base_unit_freq, start, end, layout, amendments=None, default_selector=None, default_name=None, workshift_ref='start', default_label=None, worktime_source='duration')

	Custom-built calendar.

Timeboard contains a timeline of workshifts and one or more schedules
which endow workshifts with on-duty or off-duty status.

Calculations over a timeboard are either workshift-based or interval-based.
Execute get_workshift or get_interval to instantiate
a workshift/an interval and then call their appropriate methods to
perform calculations.

Note that an instance of Timeboard is callable and such call is
a wrapper around get_workshift or get_interval method depending on the
arguments.

	Parameters:

	
	base_unit_freqstr

	Base unit is a period of time that is the building block of the
timeboard’s reference frame. Every workshift consists
of an integer number of base units. Base unit is defined by
base_unit_freq - a pandas-compatible calendar frequency
(i.e. 'D' for day or '8H' for 8 hours regarded as one unit).
pandas-native business periods (i.e. ‘BM’) are not supported.

	startTimestamp-like

	A point in time referring to the first base unit of the timeboard.
The point in time can be located anywhere within this base unit.
The value may be a pandas.Timestamp, or a string convertible
to Timestamp, or a datetime object.

	endTimestamp-like

	Same as start but for the last base unit of the timeboard.

	layoutIterable or Organizer

	Define how to mark up the timeboard into workshifts.
If layout is an Iterable, it is interpreted as a pattern of labels.
Each base unit becomes a workshift; the workshifts receive labels from
the pattern. Application of layout pattern is repeated in cycles
until the end of the timeboard is reached.
If layout is an Organizer, the timeboard is structured
according to the rules defined by the Organizer.

	amendmentsdict-like, optional

	Override labels set according to layout.
The keys of amendments are Timestamp-like points in time
used to identify workshifts (the point in time may be located
anywhere within the workshift). The values of amendments are labels
which override whatever has been set by layout for the
corresponding workshifts.
If there are several keys in amendments which refer to the same
workshift, the actual label would be unpredictable, therefore a
KeyError is raised.

	workshift_ref{'start' | 'end'}, optional (default 'start')

	Define what point in time will be used to represent a workshift.
The respective point in time will be returned by
Workshift.to_timestamp().
Available options: 'start' to use the start time of the workshift,
'end' to use the end time.

	default_namestr, optional

	The name for the default schedule. If not supplied, ‘on_duty’
is used.

	default_selectorfunction, optional

	The selector function for the default schedule. This is
the function which takes one argument - label of a workshift and
returns True if this is an on-duty workshift, False otherwise.
If not supplied, the function that returns bool(label) is used.

	default_labeloptional

	Label to initialize the timeline with. Normally, this value will be
overridden by layout unless layout is empty or an Organizer has
empty structure or empty patterns in structure. If
default_label is not specified, the timeline is initialized
with NaN.

	worktime_source{'duration', 'labels'}, optional

	Define what number is used as workshift’s work time: workshift’s
duration (default) or the label. In the latter case, you need to use
numbers as labels and it is up to you to interpret the values.

	Raises:

	
	UnacceptablePeriodError

	If base_unit_freq is not supported or an Organizer attempted
to partition the reference frame by a period which is not a multiple
of base_unit_freq.

	VoidIntervalError

	If an instantiation of a zero-duration timeboard is attempted.

	KeyError

	If amendments contain several references to the same workshift.

See also

	Organizer

	Define rules for marking up the reference frame into workshifts.

 Workshift class

Workshift class

	
class timeboard.Workshift(timeboard, location, schedule=None)

	A period of time during which a business agent is either on or off duty.

A workshift consists of at least one base unit and may span
a number of consecutive base units.

Each workshift has a label. The label is interpreted by a given schedule
to determine whether the workshift is on duty or off duty under this
schedule. The duty statuses of the same workshift can be different
under different schedules.

	Parameters:

	
	timeboardTimeboard

	

	locationint >=0

	Position of the workshift on the timeline of the timeboard (zero-based).

	schedule_Schedule, optional

	If not given, the timeboard’s default schedule is used.

	Raises:

	
	OutOfBoundsError

	If location points outside the timeboard or is negative.

See also

	Timeboard.get_workshift

	provides a convenient way to instantiate a workshift from a point in time instead of calling Workshift() constructor directly.

_static/plus.png

_static/up.png

_static/timeboard_logo.png
1

I ME

1

B|OJA|R|D

_static/up-pressed.png

_images/compound_timeboard.png
Timeboard with compound workshifts

base unit = 1 hour

Timeline 02:00 - 08:00 08:00 - 18:00 18:00- 02:00 [02:00 - 08:00 08:00 - 18:00 18:00 - 02:00 02:00 - 12:00
of Workshifts A B C D A B Closed
Schedule 1 True False False False True False False

Selector: label=="A’
Schedule 2 False True False False False True False
Selector: label=="B’

workshift _/abel workshift

duration=10 duration=6

_images/simple_timeboard.png
Frame
of base units

Timeline
of workshifts

Schedule

selector: bool(label)

Simple Timeboard

base unit = 1 day

A

14 Dec 2017 Thursday

15 Dec 2017 Friday

16 Dec 2017 Saturday

14/12/2018 00:00 - 15/12/2018 00:00

15/12/2018 00:00 - 16/12/2018 00:00

16/12/2018 00:00 - 17/12/2018 00:00

True

True\

False

Y

workshift = 1 base unit

label

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to timeboard’s documentation!

 		
 About timeboard

 		
 Contributing

 		
 License

 		
 Attribution

 		
 Installation

 		
 Python version support

 		
 Installation

 		
 Dependencies

 		
 Quick Start Guide

 		
 Set up a timeboard

 		
 Play with workshifts

 		
 Play with intervals

 		
 Data Model

 		
 Timeboard

 		
 Workshift

 		
 Frame and Base Units

 		
 Timeline

 		
 Interval

 		
 Schedule

 		
 Compound Workshifts

 		
 Work time

 		
 Making a Timeboard

 		
 Basic case

 		
 Amendments

 		
 Other Timeboard parameters

 		
 Example: Call center shifts with equal duration

 		
 Using Organizer

 		
 Parameters of Organizer

 		
 Example: Business day calendar

 		
 Example: Alternating week schedules

 		
 Undersized and oversized patterns

 		
 Recursive organizing

 		
 Using Marker

 		
 Example: Seasonal schedule

 		
 Using parameter how

 		
 Example: Seasons turning on n-th weekday of month

 		
 Using pattern with memory

 		
 Adjusting labels for work time

 		
 Workshifts of varying length

 		
 Example: Call center closing on weekends

 		
 Caveats

 		
 Not all Marker frequencies are valid

 		
 Alignment of frame may be critical

 		
 Specific days of month

 		
 Using Preconfigured Calendars

 		
 Doing Calculations

 		
 Obtaining a Workshift

 		
 Workshift-based calculations

 		
 Determining duty

 		
 Obtaining work time

 		
 Rolling forward and back

 		
 Obtaining an Interval

 		
 Caveats

 		
 Interval-based calculations

 		
 Seeking and counting workshifts

 		
 Itertating over the interval

 		
 Measuring work time

 		
 Relation with another interval

 		
 Counting periods

 		
 Caveats

 		
 Common Use Cases

 		
 Setting up the calendar

 		
 Determining deadlines

 		
 Generating shift schedule

 		
 Average annual headcount

 		
 Calculating wages and salaries payable

 		
 Periodic salary

 		
 Per-shift wage

 		
 Hourly pay

 		
 Calculating bonus based on time worked

 		
 Release Notes

 		
 timeboard 0.2.4

 		
 Resolved issues

 		
 timeboard 0.2.3

 		
 Resolved issues

 		
 Miscellaneous

 		
 timeboard 0.2.2

 		
 Resolved issues

 		
 timeboard 0.2.1

 		
 Miscellaneous

 		
 timeboard 0.2

 		
 New features
