
timeboard Documentation
Release 0.2

Maxim Mamaev

Jun 25, 2022

Contents:

1 About timeboard 3

2 Installation 5

3 Quick Start Guide 7

4 Data Model 11

5 Making a Timeboard 19

6 Using Preconfigured Calendars 41

7 Doing Calculations 43

8 Common Use Cases 63

9 Release Notes 75

i

ii

timeboard Documentation, Release 0.2

timeboard performs calendar calculations over business schedules such as business days or work shifts.

Contents: 1

timeboard Documentation, Release 0.2

2 Contents:

CHAPTER 1

About timeboard

timeboard creates schedules of work periods and performs calendar calculations over them. You can build standard
business day calendars as well as a variety of other schedules, simple or complex.

Examples of problems solved by timeboard:

• If we have 20 business days to complete the project, when will be the deadline?

• If a person was employed from November 15 to December 22 and salary is paid monthly, how many month’s
salaries has the employee earned?

• The above-mentioned person was scheduled to work Mondays, Tuesdays, Saturdays, and Sundays on odd weeks,
and Wednesdays, Thursdays, and Fridays on even weeks. The question is the same.

• A 24x7 call center operates in shifts of varying length starting at 02:00, 08:00, and 18:00. An operator comes in
on every fourth shift and is paid per shift. How many shifts has the operator sat in a specific month?

• With employees entering and leaving a company throughout a year, what was the average annual headcount?

Based on pandas timeseries library, timeboard gives more flexibility than pandas’s built-in business calendars. The
key features of timeboard are:

• You can choose any time frequencies (days, hours, multiple-hour shifts, etc.) as work periods.

• You can create sophisticated schedules which can combine periodical patterns, seasonal variations, stop-and-
resume behavior, etc.

• There are built-in standard business day calendars (in this version: for USA, UK, and Russia).

1.1 Contributing

timeboard is authored and maintained by Maxim Mamaev.

Please use Github issues for the feedback.

3

timeboard Documentation, Release 0.2

1.2 License

3-Clause BSD License

Copyright (c) 2018, Maxim Mamaev
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3 Attribution

Logo design by Olga Mamaeva.

Icon ‘Worker’ made by Freepik from www.flaticon.com is used as an element of the logo.

4 Chapter 1. About timeboard

CHAPTER 2

Installation

2.1 Python version support

timeboard is tested with Python versions 2.7, 3.6, 3.7, and 3.8.

2.2 Installation

pip install timeboard

The import statement to run all the examples is:

>>> import timeboard as tb

2.3 Dependencies

Package versions tested
pandas 0.22 - 1.0
numpy 1.13 - 1.18
python-dateutil 2.6.1 - 2.8.1
six 1.11 - 1.14

The code is tested by pytest .

5

http://pandas.pydata.org/
http://www.numpy.org/
http://labix.org/python-dateutil
http://pythonhosted.org/six/
http://pytest.org/

timeboard Documentation, Release 0.2

6 Chapter 2. Installation

CHAPTER 3

Quick Start Guide

3.1 Set up a timeboard

To get started you need to build a timeboard (calendar). The simplest way to do so is to use a preconfigured calendar
which is shipped with the package. Let’s take a regular business day calendar for the United States.

>>> import timeboard.calendars.US as US
>>> clnd = US.Weekly8x5()

Note: If you need to build a custom calendar, for example, a schedule of shifts for a 24x7 call center, Making a
Timeboard section of the documentation explains this topic in details.

Once you have got a timeboard, you may perform queries and calculations over it.

3.2 Play with workshifts

Calling a timeboard instance clnd with a single point in time produces an object representing a unit of the calendar (in
this case, a day) that contains this point in time. Object of this type is called workshift.

Is a certain date a business day?

>>> ws = clnd('27 May 2017')
>>> ws.is_on_duty()
False

Indeed, it was a Saturday.

When was the next business day?

>>> ws.rollforward()
Workshift(6359) of 'D' at 2017-05-30

7

timeboard Documentation, Release 0.2

The returned calendar unit (workshift) has the sequence number of 6359 and represents the day of 30 May 2017,
which, by the way, was the Tuesday after the Memorial Day holiday.

If we were to finish the project in 22 business days starting on 01 May 2017, when would be our deadline?

>>> clnd('01 May 2017') + 22
Workshift(6361) of 'D' at 2017-06-01

This is the same as:

>>> clnd('01 May 2017').rollforward(22)
Workshift(6361) of 'D' at 2017-06-01

3.3 Play with intervals

Calling clnd() with a different set of parameters produces an object representing an interval on the calendar. The
interval below contains all workshifts of the months of May 2017.

How many business days were there in a certain month?

>>> may2017 = clnd('May 2017', period='M')
>>> may2017.count()
22

How many days off?

>>> may2017.count(duty='off')
9

How many working hours?

>>> may2017.worktime()
176.0

An employee was on the staff from April 3, 2017 to May 15, 2017. What portion of April’s salary did the company
owe them?

Calling clnd()with a tuple of two points in time produces an interval containing all workshifts between these points,
inclusively.

>>> time_in_company = clnd(('03 Apr 2017','15 May 2017'))
>>> time_in_company.what_portion_of(clnd('Apr 2017', period='M'))
1.0

Indeed, the 1st and the 2nd of April in 2017 fell on the weekend, therefore, having started on the 3rd, the employee
checked out all the working days in the month.

And what portion of May’s?

>>> time_in_company.what_portion_of(may2017)
0.5

How many days had the employee worked in May?

The multiplication operator returns the intersection of two intervals.

8 Chapter 3. Quick Start Guide

timeboard Documentation, Release 0.2

>>> (time_in_company * may2017).count()
11

How many hours?

>>> (time_in_company * may2017).worktime()
88

An employee was on the staff from 01 Jan 2016 to 15 Jul 2017. How many years this person had worked for the
company?

>>> clnd(('01 Jan 2016', '15 Jul 2017')).count_periods('A')
1.5421686746987953

3.3. Play with intervals 9

timeboard Documentation, Release 0.2

10 Chapter 3. Quick Start Guide

CHAPTER 4

Data Model

Table of Contents

• Timeboard

• Workshift

• Frame and Base Units

• Timeline

• Interval

• Schedule

• Compound Workshifts

• Work time

4.1 Timeboard

Timeboard is a representation of a custom business calendar.

More precisely, timeboard is a collection of work schedules based on a specific timeline of workshifts built upon a
reference frame.

Note: The terms workshift, frame, timeline, and schedule have exact meanings that are explained below. On the other
hand, word calendar is considered rather ambiguous. It is used occasionally as a loose synonym for timeboard when
there is no risk of misunderstanding.

Timeboard is the upper-level object of the data model. You use timeboard as the entry point for all calculations.

11

timeboard Documentation, Release 0.2

12 Chapter 4. Data Model

timeboard Documentation, Release 0.2

4.2 Workshift

Workshift is a period of time during which a business agent is either active or not.

No assumptions are made about what “business” is and who its “agents” may be. It could be regular office workers,
or operators in a 24x7 call center, or trains calling at a station on specific days.

The activity state of a workshift is called duty; therefore for a given business agent the workshift is either “on duty” or
“off duty”. It is not relevant for determining the duty whether the agent is continuously active through the workshift,
or takes breaks, or works only for a part of the workshift. The duty is assigned to a workshift as a whole.

It is up to the user to define and interpret periods of time as workshifts in a way which is suitable for user’s application.
For example, when making plans on the regular calendar of 8-hour business days, you do not care about exact working
hours. Hence, it is sufficient to designate whole days as workshifts with business days being on-duty workshifts, and
weekends and holidays being off-duty. On the other hand, to build working schedules for operators in a 24x7 call
center who work in 8-hour shifts you have to designate each 8-hour period as a separate workshift.

See also Work time section below which discusses counting the actual work time.

Note that both on-duty and off-duty periods are called “workshifts” although work, whatever it might be, is not carried
out by the business agent when the duty is off. Generally speaking, though not necessarily, some other business agent
may operate a reversed schedule, doing work when the first agent is idle. For example, this is the case for a 24x7 call
center.

4.3 Frame and Base Units

The span of time covered by the timeboard is represented as a reference frame. Frame is a monotonous sequence of
uniform periods of time called base units. The base unit is atomic, meaning that everything on the timeboard consists
of an integer number of base units.

4.4 Timeline

Timeline is a continuous sequence of workshifts laid upon the frame.

Each workshift consists of one or more base units of the frame. The number of base units constituting a workshift is
called the duration of the workshift. Different workshifts do not necessarily have the same duration.

Each base unit of the frame belongs to one and only one workshift. This means that workshifts do not overlap and
there are no gaps between workshifts.

Each workshift is given a label. The type and semantic of labels are application-specific. Several or all workshifts can
be assigned the same label.

Labels are essential for defining the duty of the workshifts.

4.5 Interval

Interval is a continuous series of workshifts within the timeline. Number if workshifts in an interval is called the
length of the interval. Interval contains at least one workshift.

4.2. Workshift 13

timeboard Documentation, Release 0.2

4.6 Schedule

Schedule defines duty status of each workshift on the timeline according to a rule called selector. Selector examines
the label of a workshift and returns True if this workshift is considered on duty under this schedule, otherwise, it
returns False.

Timeboard contains at least one (“default”) schedule and may contain many. Each schedule employs its specific
selector. The default selector for the default schedule returns bool(label).

The duty of a workshift may vary depending on the schedule.

For example, let the timeline consist of calendar days where weekdays from Monday through Friday are labeled with
2, Saturdays are labeled with 1, and Sundays and holidays are labeled with 0. The schedule of regular business days is
obtained by applying selector label>1, and under this schedule, Saturdays are off duty. However, if children attend
schools on Saturdays, the school schedule can be obtained from the same timeline with selector label>0. Under the
latter schedule, Saturdays are on duty.

4.7 Compound Workshifts

It is important to emphasize that, when working with a timeboard, you reason about workshifts rather than base units.
Duty is associated with a workshift, not with a base unit. All calendar calculations are performed either on workshifts
or on intervals.

In many cases, workshift coincides with a base unit. The only reason to be otherwise is when you need workshifts of
varying duration. Let’s illustrate this point with examples.

When reasoning about business days, the time of day when working hours start or end is not relevant. For the purpose
of the calendar, it suffices to label a whole weekday on-duty in spite of the fact that only 8 hours of 24 are actually
taken by business activity.

Moreover, if the number of working hours do vary from day to day (i.e. Friday’s hours are shorter) and you need
to track that, the task can be solved just with workshift labeling. A workshift still takes a whole day, and within
week workshifts are labeled [8, 8, 8, 8, 7, 0, 0] reflecting the number of working hours. The default
selector=bool(label) works fine with that. Therefore, while actual workshifts do have varying duration, you
do not need to model this in the timeline. You can use a simpler timeboard where each workshift correspond to a base
unit of one calendar day.

Now consider the case of a 24x7 call center operating in 8-hour shifts. Clearly, a workshift is to be represented by an
8-hour period but this does not necessarily call for workshifts consisting of 8 base units, each base unit one hour long.
When building the frame, you are not limited to use of base units equal to a single calendar period, i.e. one hour, one
day, and so on. You can take a base unit which spans multiple consecutive calendar periods, for example, 8 hours.
Therefore, in this case, there is still no need to create workshifts consisting of several base units, as 8-hour base units
can be directly mapped to 8-hour workshifts.

However, the things change if we assume that the call center operates shifts of varying durations, i.e. 08:00 to 18:00
(10 hours), 18:00 to 02:00 (8 hours), and 02:00 to 08:00 (6 hours).

Now the base unit has to be a common divisor of all workshift durations which is one hour. (Technically, it also can
be two hours, which does not make the case any simpler, so we will stick to the more natural one-hour clocking.)

This case cannot be elegantly handled by workshifts bound to base units. This way we would end up, for any day, not
with three workshifts of 10, 8 and 6 hours long but with a succession of 24 one-hour workshifts of which either 10, 8
or 6 consecutive ones will be labeled on-duty. Creating meaningful work schedules and performing calculations for
such timeline would be a rather cumbersome challenge. Therefore we have to decouple workshifts from base units
and create the timeline where individual workshifts have durations of 10, 8, and 6 base units in the repeating pattern.

Having said that, while in many cases a workshift will coincide with a base unit, these entities have different purposes.

14 Chapter 4. Data Model

timeboard Documentation, Release 0.2

A workshift comprising more than one base unit is called compound workshift.

4.7. Compound Workshifts 15

timeboard Documentation, Release 0.2

16 Chapter 4. Data Model

timeboard Documentation, Release 0.2

4.8 Work time

Work time (also spelled ‘worktime’ in names of functions and parameters) is the amount of time within workshift
which the agent spends actually doing work. In many use cases, you will want to find out the work time of a specific
workshift or the total work time of an interval.

Depending on the model of a timeboard, the duration of workshift may or may not represent the work time. Typically,
in the models based on continuous succession of shifts, the work time takes the entire workshift. On the other hand,
in calendars of business days, the actual work time takes only a part of a workshift (that is, of a day).

In the latter case, you may use workshift labels to indicate the work time as it has been shown in the previous section.
Obviously, such labels must be numbers. Their interpretation is up to the user.

When creating your timeboard you will have to specify the source of information for counting the work time: either
it is workshift’s duration or workshift’s label. Accordingly, the functions counting the work time will return either the
number of base units in the workshift/interval or the sum of the labels.

4.8. Work time 17

timeboard Documentation, Release 0.2

18 Chapter 4. Data Model

CHAPTER 5

Making a Timeboard

Table of Contents

• Basic case

– Amendments

– Other Timeboard parameters

– Example: Call center shifts with equal duration

• Using Organizer

– Parameters of Organizer

– Example: Business day calendar

– Example: Alternating week schedules

– Undersized and oversized patterns

• Recursive organizing

• Using Marker

– Example: Seasonal schedule

– Using parameter how

– Example: Seasons turning on n-th weekday of month

• Using pattern with memory

• Adjusting labels for work time

• Workshifts of varying length

– Example: Call center closing on weekends

• Caveats

19

timeboard Documentation, Release 0.2

– Not all Marker frequencies are valid

– Alignment of frame may be critical

– Specific days of month

A timeboard is constructed by calling Timeboard() constructor with parameters that define the desired configura-
tion of the calendar. In the simplest case this can be done by a one-liner but most likely you will use auxiliary tools
such as Organizer, Marker, and RememberingPattern.

The import statement to run the examples:

>>> import timeboard as tb

It is assumed that you are familiar with Data Model.

5.1 Basic case

Timeboard class requires four mandatory parameters for instantiating a timeboard:

>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Oct 2017', end='10 Oct 2017',
... layout=[1, 0, 0])

The first three parameters define the frame:

base_unit_freq [str] A pandas-compatible calendar frequency (i.e. ‘D’ for calendar day or ‘8H’ for 8 consecutive
hours regarded as one period) which defines timeboard’s base unit. Pandas-native business periods (i.e. ‘BM’)
are not supported.

start [Timestamp-like] A point in time referring to the first base unit of the timeboard. The point in time can be located
anywhere within this base unit. The value may be a pandas Timestamp, or a string convertible to Timestamp
(i.e. “01 Oct 2017 18:00”), or a datetime object.

end [Timestamp-like] Same as start but for the last base unit of the timeboard.

The fourth parameter, layout, describes the timeline of workshifts.

In the basic case layout is simply an iterable of workshift labels. In the above example layout=[1, 0, 0] means
that each workshift occupies one base unit; the workshift at the first base unit receives label 1, the second workshift
receives label 0, the third - again label 0. Further on, label assignment repeats in cycles: the forth workshift will get
label 1, the fifth - 0, the sixth - 0, the seventh - 1, and so on. This way the timeline is created.

Under the hood, the timeboard builds default schedule using default selector which returns bool(label). There-
fore, under this schedule, the first and then every forth workshift are on duty, and the rest are off duty.

>>> print(clnd)
Timeboard of 'D': 2017-10-01 -> 2017-10-10

ws_ref start duration end label on_duty
loc
0 2017-10-01 2017-10-01 1 2017-10-01 1.0 True
1 2017-10-02 2017-10-02 1 2017-10-02 0.0 False
2 2017-10-03 2017-10-03 1 2017-10-03 0.0 False
3 2017-10-04 2017-10-04 1 2017-10-04 1.0 True
4 2017-10-05 2017-10-05 1 2017-10-05 0.0 False
5 2017-10-06 2017-10-06 1 2017-10-06 0.0 False

(continues on next page)

20 Chapter 5. Making a Timeboard

timeboard Documentation, Release 0.2

(continued from previous page)

6 2017-10-07 2017-10-07 1 2017-10-07 1.0 True
7 2017-10-08 2017-10-08 1 2017-10-08 0.0 False
8 2017-10-09 2017-10-09 1 2017-10-09 0.0 False
9 2017-10-10 2017-10-10 1 2017-10-10 1.0 True

5.1.1 Amendments

You use the optional parameter amendments to account for any disruptions of the regular pattern of the calendar (such
as holidays, etc.).

amendments are a dictionary. The keys are Timestamp-like points in time used to identify workshifts (the point in
time may be located anywhere within the workshift, i.e. at noon of a day as in the example below). The values of
amendments are labels for the corresponding workshifts overriding the labels which have been set by layout.

>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Oct 2017', end='10 Oct 2017',
... layout=[1, 0, 0],
... amendments={'07 Oct 2017 12:00': 0})
>>> print(clnd)
Timeboard of 'D': 2017-10-01 -> 2017-10-10

ws_ref start duration end label on_duty
loc
0 2017-10-01 2017-10-01 1 2017-10-01 1 True
1 2017-10-02 2017-10-02 1 2017-10-02 0 False
2 2017-10-03 2017-10-03 1 2017-10-03 0 False
3 2017-10-04 2017-10-04 1 2017-10-04 1 True
4 2017-10-05 2017-10-05 1 2017-10-05 0 False
5 2017-10-06 2017-10-06 1 2017-10-06 0 False
6 2017-10-07 2017-10-07 1 2017-10-07 0 False
7 2017-10-08 2017-10-08 1 2017-10-08 0 False
8 2017-10-09 2017-10-09 1 2017-10-09 0 False
9 2017-10-10 2017-10-10 1 2017-10-10 1 True

Note, that if there are several keys in amendments which refer to the same workshift, the final label of this workshift
would be unpredictable, therefore a KeyError is raised:

>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Oct 2017', end='10 Oct 2017',
... layout=[1, 0, 0],
... amendments={'07 Oct 2017 12:00': 0,
... '07 Oct 2017 15:00': 1})

KeyError Traceback (most recent call last)

...
KeyError: "Amendments key '07 Oct 2017 15:00' is a duplicate reference to workshift 6"

5.1.2 Other Timeboard parameters

workshift_ref [{"start" | "end"}, optional (default "start")] Define what point in time will be used to repre-
sent a workshift. The respective point in time will be returned by Workshift.to_timestamp(). Available
options: "start" to use the start time of the workshift, "end" to use the end time.

When printing a timeboard, the workshift reference time is shown in “ws_ref” column.

5.1. Basic case 21

timeboard Documentation, Release 0.2

Workshift reference time is used to determine to which calendar period the workshift belongs if the workshift
straddles a boundary of the calendar period. This is used by Interval.count_periods().

default_name [str, optional] The name for the default schedule. If not supplied, “on_duty” is used.

When printing a timeboard, the rightmost column(s) are titled with the names of the schedules and show the
workshift duty statuses under the corresponding schedules: True if the workshift is on duty, False otherwise.
There is at least one column, showing the default schedule.

default_selector [function, optional] The selector function for the default schedule. This is the function which takes
one argument - label of a workshift and returns True if this is an on-duty workshift, False otherwise. If not
supplied, the function that returns bool(label) is used.

worktime_source [{'duration', 'labels'}, optional] Define what number is used as workshift’s work time:
workshift’s duration (default) or the label. In the latter case, you need to use numbers as labels and it is up to
you to interpret the values. See also Work time section in Data Model.

5.1.3 Example: Call center shifts with equal duration

Operators in a 24x7 call center work in three 8-hour shifts starting at 10:00, 18:00, and 02:00. For each operator one
on-duty shift is followed by three off-duty shifts. Hence, four teams of operators are needed. They are designated as
‘A’, ‘B’, ‘C’, and ‘D’.

>>> clnd = tb.Timeboard(base_unit_freq='8H',
... start='01 Oct 2017 02:00', end='05 Oct 2017 01:59',
... layout=['A', 'B', 'C', 'D'])
>>> print(clnd)
Timeboard of '8H': 2017-10-01 02:00 -> 2017-10-04 18:00

ws_ref ... end label on_duty
loc ...
0 2017-10-01 02:00:00 ... 2017-10-01 09:59:59 A True
1 2017-10-01 10:00:00 ... 2017-10-01 17:59:59 B True
2 2017-10-01 18:00:00 ... 2017-10-02 01:59:59 C True
3 2017-10-02 02:00:00 ... 2017-10-02 09:59:59 D True
4 2017-10-02 10:00:00 ... 2017-10-02 17:59:59 A True
5 2017-10-02 18:00:00 ... 2017-10-03 01:59:59 B True
6 2017-10-03 02:00:00 ... 2017-10-03 09:59:59 C True
7 2017-10-03 10:00:00 ... 2017-10-03 17:59:59 D True
8 2017-10-03 18:00:00 ... 2017-10-04 01:59:59 A True
9 2017-10-04 02:00:00 ... 2017-10-04 09:59:59 B True
10 2017-10-04 10:00:00 ... 2017-10-04 17:59:59 C True
11 2017-10-04 18:00:00 ... 2017-10-05 01:59:59 D True

The "start" and "duration" columns have been omitted to fit the output
to the page

There are two things in this example to point out.

First, to avoid the compound workshifts we use the 8-hour base unit but we need to align the base units with the
workshifts, hence the frame starts at 02:00 o’clock.

Note: The duration of each workshift equals to one (base unit). Accordingly, work time of a workshift is also equal
to one. To express workshift’s duration or the work time in units of time, multiply it by the length of the base unit.

Second, all shifts are on duty because the default selector evaluates each label to True. It can be interpreted as the call
center as a whole being always on duty. It is recommended to leave the default schedule as it is. In a later example,

22 Chapter 5. Making a Timeboard

timeboard Documentation, Release 0.2

we will see how it can be made useful.

To find out which workshifts are on duty for a team labeled with a particular symbol, you may add a schedule to the
timeboard and supply the appropriate selector function:

>>> clnd.add_schedule(name='team_A', selector=lambda label: label=='A')
>>> print(clnd)
Timeboard of '8H': 2017-10-01 02:00 -> 2017-10-04 18:00

ws_ref ... end label on_duty team_A
loc ...
0 2017-10-01 02:00:00 ... 2017-10-01 09:59:59 A True True
1 2017-10-01 10:00:00 ... 2017-10-01 17:59:59 B True False
2 2017-10-01 18:00:00 ... 2017-10-02 01:59:59 C True False
3 2017-10-02 02:00:00 ... 2017-10-02 09:59:59 D True False
4 2017-10-02 10:00:00 ... 2017-10-02 17:59:59 A True True
5 2017-10-02 18:00:00 ... 2017-10-03 01:59:59 B True False
6 2017-10-03 02:00:00 ... 2017-10-03 09:59:59 C True False
7 2017-10-03 10:00:00 ... 2017-10-03 17:59:59 D True False
8 2017-10-03 18:00:00 ... 2017-10-04 01:59:59 A True True
9 2017-10-04 02:00:00 ... 2017-10-04 09:59:59 B True False
10 2017-10-04 10:00:00 ... 2017-10-04 17:59:59 C True False
11 2017-10-04 18:00:00 ... 2017-10-05 01:59:59 D True False

The "start" and "duration" columns have been omitted to fit the output
to the page

5.2 Using Organizer

For most real-world scenarios a simple pattern of labels uniformly recurring across the whole timeboard is not suffi-
cient for building a usable timeline. This is where Organizer comes into play.

Organizer tells how to partition the frame into chunks called ‘spans’ and how to structure each span into workshifts.

There are two mandatory parameters for an organizer. The first one is either marks or marker (but not both), it defines
spans’ boundaries. The second one is structure, it defines the structure of each span.

Below is an example of the organizer used to build a regular business calendar:

>>> weekly = tb.Organizer(marker='W', structure=[[1,1,1,1,1,0,0]])

An organizer is supplied to Timeboard() constructor in layout parameter instead of a pattern of labels which has
been discussed in the previous section:

>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Oct 2017', end='12 Oct 2017',
... layout=weekly)

5.2.1 Parameters of Organizer

The first parameter of Organizer() - marks or marker, whichever is given, - tells where on the frame there will be
marks designating the boundaries of spans. A mark is a point in time; the base unit containing this point in time will
be the first base unit of a span.

If, for example, an organizer defines two marks, there will be three spans. The first span will begin on the first base unit
of the frame and end on the base unit immediately preceding the unit containing the first mark. The second span will

5.2. Using Organizer 23

timeboard Documentation, Release 0.2

begin on the base unit containing the first mark and end on the base unit immediately preceding the unit containing
the second mark. The third span will begin on the base unit containing the second mark and end on the last base unit
of the frame.

marks [Iterable] This is a list of explicit points in time which refer to the first base units of the spans.

A point in time is a Timestamp-like value (a pandas.Timestamp, or a string convertible to Timestamp (i.e. “10
Oct 2017 18:00”), or a datetime object). A point in time can be located anywhere within the base unit it refers
to.

An empty marks list means that no partitioning is done, and the only span is the entire frame.

marker [str or Marker] You use marker to define the rule how to calculate the locations of marks rather than specify
the explicit points in time as with marks parameter.

In simpler cases, the value of marker is a string representing a pandas-compatible calendar frequency (accepts
the same kind of values as base_unit_freq of Timeboard; for example, 'W' for weeks). The marks are
set at the start times of the calendar periods, and as the result, the frame is partitioned into spans representing
periods of the specified frequency.

Note that the first or the last span, or both may end up containing incomplete calendar periods. For example, the
daily frame from 1 Oct 2017 through 12 Oct 2017 when partitioned with marker='W' produces three spans.
The first span contains only 1 Oct 2017 as it was Sunday. The second span contains the full week from the
Monday 2nd through the Sunday 8th of October. The last span consists of four days 9-12 of October which
obviously do not form a complete week.

The parts of the “marker” calendar periods which fall outside the first and the last spans are called dangles.
In our example the left dangle is the period from Monday 25 through Saturday 30 of September, and the right
dangle is the period from Friday 13 through Sunday 15 of October:

Mo Tu We Th Fr Sa Su
left dangle : 25 26 27 28 29 30
span 0 : 1 frame start='01 Oct 2017'
span 1 : 2 3 4 5 6 7 8
span 2 : 9 10 11 12 frame end='12 Oct 2017'
right dangle : 13 14 15

The practical significance of dangles will be clarified shortly.

structure [Iterable] Each element of structure matches a span produced by partitioning: the first element of structure
is applied to the first span, the second - to the second span, and so on. If structure gets exhausted, it starts over
and iterates in cycles until the last span has been treated.

An element of structure can be one of the following:

• a pattern of labels : make each base unit a separate workshift, assign labels from the pattern;

• another Organizer : recursively organize the span into sub-spans;

• a single label : combine all base units of the span into a single compound workshift with the given label.

The following sections will provide examples of all these options.

Note: Under the hood, layout=[1, 0, 0] passed to Timeboard() is converted into
layout=Organizer(marks=[], structure=[[1, 0, 0]]).

5.2.2 Example: Business day calendar

24 Chapter 5. Making a Timeboard

timeboard Documentation, Release 0.2

Note:

1. For the demonstration purposes, the timeboard is deliberately made short.

2. For the real-world usage, the holidays must be accounted for in the form of amendments. Here they are omitted
for simplicity.

>>> weekly = tb.Organizer(marker='W', structure=[[1,1,1,1,1,0,0]])
>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Oct 2017', end='12 Oct 2017',
... layout=weekly)

In this example, the frame is partitioned into calendar weeks. This process produces three spans as shown in the
previous section. The first span contains only Sunday 1 Oct 2017. The second span contains the full week from the
Monday 2nd through the Sunday 8th of October. The last span consists of four days 9-12 of October.

The first element of structure is a list of values - a pattern. Therefore in the first span workshifts coincide with base
units and receive labels from the pattern.

However, unlike the use of pattern directly in layout parameter of Timeboard, the first workshift of the span does
not necessarily receive the first label of the pattern. If the span has a left dangle, the pattern starts with a shadow run
through the length of the dangle. Only after that, it begins yielding labels for workshifts of the span. This approach
can be viewed as if the dangle was attached to the first span to form the complete calendar period (in this example, a
complete week) and then the pattern was applied from the start of the period but only those results (assigned labels) are
retained that fall within the span. In this way, the workshift of October 1 receives the seventh label from the pattern,
which is 0, after the first six labels have been shadow-assigned to the base units of the dangle.

The second span, a full week of October 2-8, is to be treated with the second element of structure. However, there is
no second element. Consequently, structure is reenacted in cycles meaning that each span is treated with the first and
the only element of the structure.

An interior span, such as the second span of this example, cannot have dangles. Therefore, the seven labels of the
pattern are assigned in order to the seven workshifts of the second span.

The last, third span is again an incomplete week, but this time there is a right dangle. As patterns are currently applied
only left to right, the presence of the right dangle does not produce any effect upon workshift labeling. The four
workshifts of the third span receive the first four labels from the pattern.

The resulting calendar is printed below.

>>> print(clnd)
Timeboard of 'D': 2017-10-01 -> 2017-10-12

ws_ref start duration end label on_duty
loc
0 2017-10-01 2017-10-01 1 2017-10-01 0.0 False
1 2017-10-02 2017-10-02 1 2017-10-02 1.0 True
2 2017-10-03 2017-10-03 1 2017-10-03 1.0 True
3 2017-10-04 2017-10-04 1 2017-10-04 1.0 True
4 2017-10-05 2017-10-05 1 2017-10-05 1.0 True
5 2017-10-06 2017-10-06 1 2017-10-06 1.0 True
6 2017-10-07 2017-10-07 1 2017-10-07 0.0 False
7 2017-10-08 2017-10-08 1 2017-10-08 0.0 False
8 2017-10-09 2017-10-09 1 2017-10-09 1.0 True
9 2017-10-10 2017-10-10 1 2017-10-10 1.0 True
10 2017-10-11 2017-10-11 1 2017-10-11 1.0 True
11 2017-10-12 2017-10-12 1 2017-10-12 1.0 True

5.2. Using Organizer 25

timeboard Documentation, Release 0.2

5.2.3 Example: Alternating week schedules

Consider a schedule of workshifts in a car dealership. A mechanic works on Monday, Tuesday, Saturday, and Sunday
this week, and on Wednesday, Thursday, and Friday next week; then the bi-weekly cycle repeats.

>>> biweekly = tb.Organizer(marker='W',
... structure=[[1,1,0,0,0,1,1],[0,0,1,1,1,0,0]])
>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Oct 2017', end='22 Oct 2017',
... layout=biweekly)
>>> print(clnd)
Timeboard of 'D': 2017-10-01 -> 2017-10-22

ws_ref start duration end label on_duty
loc
0 2017-10-01 2017-10-01 1 2017-10-01 1.0 True
1 2017-10-02 2017-10-02 1 2017-10-02 0.0 False
2 2017-10-03 2017-10-03 1 2017-10-03 0.0 False
3 2017-10-04 2017-10-04 1 2017-10-04 1.0 True
4 2017-10-05 2017-10-05 1 2017-10-05 1.0 True
5 2017-10-06 2017-10-06 1 2017-10-06 1.0 True
6 2017-10-07 2017-10-07 1 2017-10-07 0.0 False
7 2017-10-08 2017-10-08 1 2017-10-08 0.0 False
8 2017-10-09 2017-10-09 1 2017-10-09 1.0 True
9 2017-10-10 2017-10-10 1 2017-10-10 1.0 True
10 2017-10-11 2017-10-11 1 2017-10-11 0.0 False
11 2017-10-12 2017-10-12 1 2017-10-12 0.0 False
12 2017-10-13 2017-10-13 1 2017-10-13 0.0 False
13 2017-10-14 2017-10-14 1 2017-10-14 1.0 True
14 2017-10-15 2017-10-15 1 2017-10-15 1.0 True
15 2017-10-16 2017-10-16 1 2017-10-16 0.0 False
16 2017-10-17 2017-10-17 1 2017-10-17 0.0 False
17 2017-10-18 2017-10-18 1 2017-10-18 1.0 True
18 2017-10-19 2017-10-19 1 2017-10-19 1.0 True
19 2017-10-20 2017-10-20 1 2017-10-20 1.0 True
20 2017-10-21 2017-10-21 1 2017-10-21 0.0 False
21 2017-10-22 2017-10-22 1 2017-10-22 0.0 False

5.2.4 Undersized and oversized patterns

A pattern supplied as an element of structure can be found undersized. It means that the pattern is shorter than the
length of the span it is to be applied to. In this case the pattern will be reenacted in cycles until the full length of the
span has been covered.

If at the same time, the span has a left dangle associated with it, then the approach is consistent with the one described
in the previous section. The dangle is attached to the beginning of the span. Then the pattern is run in cycles over the
combined dangle-and-span retaining only those labels that belong to the span.

The example below illustrates the behavior of undersized patterns. It shows the calendar of activities happening on
odd days of the week.

>>> weekly = tb.Organizer(marker='W', structure=[[1,0]])
>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Oct 2017', end='12 Oct 2017',
... layout=weekly)
>>> print(clnd)

(continues on next page)

26 Chapter 5. Making a Timeboard

timeboard Documentation, Release 0.2

(continued from previous page)

Timeboard of 'D': 2017-10-01 -> 2017-10-12

ws_ref start duration end label on_duty
loc
0 2017-10-01 2017-10-01 1 2017-10-01 1.0 True
1 2017-10-02 2017-10-02 1 2017-10-02 1.0 True
2 2017-10-03 2017-10-03 1 2017-10-03 0.0 False
3 2017-10-04 2017-10-04 1 2017-10-04 1.0 True
4 2017-10-05 2017-10-05 1 2017-10-05 0.0 False
5 2017-10-06 2017-10-06 1 2017-10-06 1.0 True
6 2017-10-07 2017-10-07 1 2017-10-07 0.0 False
7 2017-10-08 2017-10-08 1 2017-10-08 1.0 True
8 2017-10-09 2017-10-09 1 2017-10-09 1.0 True
9 2017-10-10 2017-10-10 1 2017-10-10 0.0 False
10 2017-10-11 2017-10-11 1 2017-10-11 1.0 True
11 2017-10-12 2017-10-12 1 2017-10-12 0.0 False

Note that the first of October receives label 1 after the pattern [1, 0] has completed three shadow cycles over the
six-day dangle.

If the pattern is oversized, meaning it is longer than the span, the excess labels are ignored. Should the same pattern
be applied to another span in the next cycle through structure, the labeling restarts from the beginning of the pattern.

5.3 Recursive organizing

A small museum’s schedule is seasonal. In winter (November through April) the museum is open only on Wednesdays
and Thursdays, but in summer (May through October) the museum works every day except Monday.

>>> winter = tb.Organizer(marker='W', structure=[[0,0,1,1,0,0,0]])
>>> summer = tb.Organizer(marker='W', structure=[[0,1,1,1,1,1,1]])
>>> seasonal = tb.Organizer(marker='6M', structure=[winter, summer])
>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Nov 2015', end='31 Oct 2017',
... layout=seasonal)

In this example there are two levels of organizers.

On the outer level seasonal organizer partitions the frame into spans of 6 months each. The spans represent, alter-
natively, winter and summer seasons. The structure of this organizer, instead of patterns of labels, contains other
organizers. These inner level organizers, named winter and summer, are applied, in turns, to the spans produced by
seasonal organizer as if they were whole frames.

On the inner level, each season is partitioned into weeks by winter or summer organizer correspondingly. As the result,
workshifts within the weeks of each season receive labels from the patterns specific for the seasons.

>>> print(clnd)
Timeboard of 'D': 2015-11-01 -> 2017-10-31

ws_ref start duration end label on_duty
loc
0 2015-11-01 2015-11-01 1 2015-11-01 0.0 False
1 2015-11-02 2015-11-02 1 2015-11-02 0.0 False
2 2015-11-03 2015-11-03 1 2015-11-03 0.0 False
3 2015-11-04 2015-11-04 1 2015-11-04 1.0 True
4 2015-11-05 2015-11-05 1 2015-11-05 1.0 True

(continues on next page)

5.3. Recursive organizing 27

timeboard Documentation, Release 0.2

(continued from previous page)

5 2015-11-06 2015-11-06 1 2015-11-06 0.0 False
6 2015-11-07 2015-11-07 1 2015-11-07 0.0 False
7 2015-11-08 2015-11-08 1 2015-11-08 0.0 False
8 2015-11-09 2015-11-09 1 2015-11-09 0.0 False
9 2015-11-10 2015-11-10 1 2015-11-10 0.0 False
10 2015-11-11 2015-11-11 1 2015-11-11 1.0 True
11 2015-11-12 2015-11-12 1 2015-11-12 1.0 True
12 2015-11-13 2015-11-13 1 2015-11-13 0.0 False
13 2015-11-14 2015-11-14 1 2015-11-14 0.0 False
14 2015-11-15 2015-11-15 1 2015-11-15 0.0 False
...
715 2017-10-16 2017-10-16 1 2017-10-16 0.0 False
716 2017-10-17 2017-10-17 1 2017-10-17 1.0 True
717 2017-10-18 2017-10-18 1 2017-10-18 1.0 True
718 2017-10-19 2017-10-19 1 2017-10-19 1.0 True
719 2017-10-20 2017-10-20 1 2017-10-20 1.0 True
720 2017-10-21 2017-10-21 1 2017-10-21 1.0 True
721 2017-10-22 2017-10-22 1 2017-10-22 1.0 True
722 2017-10-23 2017-10-23 1 2017-10-23 0.0 False
723 2017-10-24 2017-10-24 1 2017-10-24 1.0 True
724 2017-10-25 2017-10-25 1 2017-10-25 1.0 True
725 2017-10-26 2017-10-26 1 2017-10-26 1.0 True
726 2017-10-27 2017-10-27 1 2017-10-27 1.0 True
727 2017-10-28 2017-10-28 1 2017-10-28 1.0 True
728 2017-10-29 2017-10-29 1 2017-10-29 1.0 True
729 2017-10-30 2017-10-30 1 2017-10-30 0.0 False
730 2017-10-31 2017-10-31 1 2017-10-31 1.0 True

[731 rows x 6 columns]

There may be any number of recursion levels for organizers.

5.4 Using Marker

The museum’s schedule discussed in the previous section is contrived in that each season is exactly 6 months long. If,
for example, the summer season began on the 1st of May and ended on the 15th of September, we could not construct
the timeline by merely partitioning the frame with calendar periods.

More sophisticated partitioning is achieved with the tool called Marker. For example, the marks for seasons starting
annually on May 1 and Sep 16 are set by:

tb.Marker(each='A', at=[{'months':4}, {'months':8, 'days':15}])

Marker() constructor takes one mandatory parameter, each, but the real power comes with the use of parameter at.

each [str] pandas-compatible calendar frequency (accepts the same kind of values as
base_unit_freq of Timeboard).

at [list of dict, optional] This is an iterable of dictionaries. Each dictionary specifies a time offset using
such keywords as 'months', 'days', 'hours', etc.

For each calendar period of frequency each, we obtain candidate marks by adding offsets from at list to the start time
of the period. After that we retain only those candidates that fall within the period (and, obviously, within the frame) -
these points become the marks.

The expression in the above example:

28 Chapter 5. Making a Timeboard

timeboard Documentation, Release 0.2

tb.Marker(each='A', at=[{'months':4}, {'months':8, 'days':15}])

means:

there are two marks per year;
to get the first mark add 4 months to the start of each year;
to get the second mark add 8 months and 15 days to the start of the same year.

As a result, the frame is partitioned into spans starting on the 1st of May and on the 16th of September of each year
provided that these dates are within the frame bounds.

An instance of Marker is passed to Organizer() constructor as the value of marker parameter instead of a simple
calendar frequency.

5.4.1 Example: Seasonal schedule

Here comes a more realistic schedule for the small museum. In winter (September 16 through April 30) the museum
is open only on Wednesdays and Thursdays, but in summer (May 1 through September 15) the museum works every
day except Monday.

>>> winter = tb.Organizer(marker='W', structure=[[0,0,1,1,0,0,0]])
>>> summer = tb.Organizer(marker='W', structure=[[0,1,1,1,1,1,1]])
>>> seasons = tb.Marker(each='A',
... at=[{'months':4}, {'months':8, 'days':15}])
>>> seasonal = tb.Organizer(marker=seasons,
... structure=[winter, summer])
>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Jan 2015', end='31 Dec 2017',
... layout=seasonal)

As the timeboard is too long, we will print only intervals around the marks.

>>> print(clnd(('20 Apr 2017','10 May 2017')))
Interval((840, 860)): 'D' at 2017-04-20 -> 'D' at 2017-05-10 [21]

ws_ref start duration end label on_duty
loc
840 2017-04-20 2017-04-20 1 2017-04-20 1.0 True
841 2017-04-21 2017-04-21 1 2017-04-21 0.0 False
842 2017-04-22 2017-04-22 1 2017-04-22 0.0 False
843 2017-04-23 2017-04-23 1 2017-04-23 0.0 False
844 2017-04-24 2017-04-24 1 2017-04-24 0.0 False
845 2017-04-25 2017-04-25 1 2017-04-25 0.0 False
846 2017-04-26 2017-04-26 1 2017-04-26 1.0 True
847 2017-04-27 2017-04-27 1 2017-04-27 1.0 True
848 2017-04-28 2017-04-28 1 2017-04-28 0.0 False
849 2017-04-29 2017-04-29 1 2017-04-29 0.0 False
850 2017-04-30 2017-04-30 1 2017-04-30 0.0 False
851 2017-05-01 2017-05-01 1 2017-05-01 0.0 False
852 2017-05-02 2017-05-02 1 2017-05-02 1.0 True
853 2017-05-03 2017-05-03 1 2017-05-03 1.0 True
854 2017-05-04 2017-05-04 1 2017-05-04 1.0 True
855 2017-05-05 2017-05-05 1 2017-05-05 1.0 True
856 2017-05-06 2017-05-06 1 2017-05-06 1.0 True
857 2017-05-07 2017-05-07 1 2017-05-07 1.0 True
858 2017-05-08 2017-05-08 1 2017-05-08 0.0 False

(continues on next page)

5.4. Using Marker 29

timeboard Documentation, Release 0.2

(continued from previous page)

859 2017-05-09 2017-05-09 1 2017-05-09 1.0 True
860 2017-05-10 2017-05-10 1 2017-05-10 1.0 True

>>> print(clnd(('04 Sep 2017','24 Sep 2017')))
Interval((977, 997)): 'D' at 2017-09-04 -> 'D' at 2017-09-24 [21]

ws_ref start duration end label on_duty
loc
977 2017-09-04 2017-09-04 1 2017-09-04 0.0 False
978 2017-09-05 2017-09-05 1 2017-09-05 1.0 True
979 2017-09-06 2017-09-06 1 2017-09-06 1.0 True
980 2017-09-07 2017-09-07 1 2017-09-07 1.0 True
981 2017-09-08 2017-09-08 1 2017-09-08 1.0 True
982 2017-09-09 2017-09-09 1 2017-09-09 1.0 True
983 2017-09-10 2017-09-10 1 2017-09-10 1.0 True
984 2017-09-11 2017-09-11 1 2017-09-11 0.0 False
985 2017-09-12 2017-09-12 1 2017-09-12 1.0 True
986 2017-09-13 2017-09-13 1 2017-09-13 1.0 True
987 2017-09-14 2017-09-14 1 2017-09-14 1.0 True
988 2017-09-15 2017-09-15 1 2017-09-15 1.0 True
989 2017-09-16 2017-09-16 1 2017-09-16 0.0 False
990 2017-09-17 2017-09-17 1 2017-09-17 0.0 False
991 2017-09-18 2017-09-18 1 2017-09-18 0.0 False
992 2017-09-19 2017-09-19 1 2017-09-19 0.0 False
993 2017-09-20 2017-09-20 1 2017-09-20 1.0 True
994 2017-09-21 2017-09-21 1 2017-09-21 1.0 True
995 2017-09-22 2017-09-22 1 2017-09-22 0.0 False
996 2017-09-23 2017-09-23 1 2017-09-23 0.0 False
997 2017-09-24 2017-09-24 1 2017-09-24 0.0 False

If at parameter is not given or is an empty list, the marks are placed at the start times of the calendar periods specified
by each.

Note: Under the hood, marker='x' passed to Organizer() is converted into
marker=Marker(each='x').

It should be emphasized that in the presence of non-empty at list the frame is partitioned on the each period boundary
only if it is explicitly defined in at in the form of the zero offset (i.e. at=[{'days':0}, ...]).

If at list is non-empty but its processing has not produced any valid marks, no partitioning occurs.

Note that now we do not have to align the start of the frame with the start of a season. However, we must make sure
that, if the frame starts in winter, then the first element in the structure of seasonal organizer is the organizer that is
responsible for winter and vice versa.

5.4.2 Using parameter how

Marker() constructor has the third parameter how which defines the interpretation of keyword arguments provided
in at list:

30 Chapter 5. Making a Timeboard

timeboard Documentation, Release 0.2

Value of how Interpretation of keyword arguments in at
‘from_start_of_each’ Keyword arguments define an offset from the begin-

ning of each period. Acceptable keyword arguments
are 'seconds', 'minutes', 'hours', 'days',
'weeks', 'months', 'years'.
Example: at=[{'days':0}, {'days':1,
'hours':2}] (the first mark is at the start of the
period, the second is in 1 day and 2 hours from the start
of the period).

‘from_easter_western’ Keyword arguments define an offset from the day of
Western Easter. Acceptable arguments are the same as
above.

‘from_easter_orthodox’ Keyword arguments define an offset from the day of Or-
thodox Easter. Acceptable arguments are the same as
above.

‘nth_weekday_of_month’ Keywords arguments refer to N-th weekday of M-th
month from the start of each period. Acceptable key-
words are:

• 'month' [1..12] 1 is for the first month (such as
January for the annual frequency).

• 'weekday' [1..7] 1 is for Monday, 7 is for Sun-
day.

• 'week' [-5..-1, 1..5] -1 is for the last and 1 is
for the first occurrence of the weekday in the
month. Zero is not allowed.

• 'shift' [int, optional, default 0] An offset in
days from the weekday found.

Example: at=[{'month':5, 'weekday':7,
'week':-1}] (the last Sunday of the 5th month)

The options 'from_easter_western' and 'from_easter_orthodox' assume the same format of at key-
words as the default option 'from_start_of_each' which has been explored in the previous section. The
difference is that the offset now may be negative. For example,

tb.Marker(each='A', at=[{'days': -2}], how='from_easter_western')

sets marks at 00:00 on Good Fridays.

5.4.3 Example: Seasons turning on n-th weekday of month

The museum’s summer season starts on a Tuesday after the first Monday in May and ends on the last Sunday in
September. During summer the museum is open every day except Monday; during winter it is open on Wednesdays
and Thursdays only.

>>> winter = tb.Organizer(marker='W', structure=[[0,0,1,1,0,0,0]])
>>> summer = tb.Organizer(marker='W', structure=[[0,1,1,1,1,1,1]])
>>> seasons = tb.Marker(each='A',
... at=[{'month':5, 'weekday':1, 'week':1, 'shift':1},
... {'month':9, 'weekday':7, 'week':-1}],
... how='nth_weekday_of_month')
>>> seasonal = tb.Organizer(marker=seasons,
... structure=[winter, summer])

(continues on next page)

5.4. Using Marker 31

timeboard Documentation, Release 0.2

(continued from previous page)

>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Jan 2012', end='31 Dec 2015',
... layout=seasonal)

>>> print(clnd(('30 Apr 2012','15 May 2012')))
Interval((120, 135)): 'D' at 2012-04-30 -> 'D' at 2012-05-15 [16]

ws_ref start duration end label on_duty
loc
120 2012-04-30 2012-04-30 1 2012-04-30 0.0 False
121 2012-05-01 2012-05-01 1 2012-05-01 0.0 False
122 2012-05-02 2012-05-02 1 2012-05-02 1.0 True
123 2012-05-03 2012-05-03 1 2012-05-03 1.0 True
124 2012-05-04 2012-05-04 1 2012-05-04 0.0 False
125 2012-05-05 2012-05-05 1 2012-05-05 0.0 False
126 2012-05-06 2012-05-06 1 2012-05-06 0.0 False
127 2012-05-07 2012-05-07 1 2012-05-07 0.0 False
128 2012-05-08 2012-05-08 1 2012-05-08 1.0 True
129 2012-05-09 2012-05-09 1 2012-05-09 1.0 True
130 2012-05-10 2012-05-10 1 2012-05-10 1.0 True
131 2012-05-11 2012-05-11 1 2012-05-11 1.0 True
132 2012-05-12 2012-05-12 1 2012-05-12 1.0 True
133 2012-05-13 2012-05-13 1 2012-05-13 1.0 True
134 2012-05-14 2012-05-14 1 2012-05-14 0.0 False
135 2012-05-15 2012-05-15 1 2012-05-15 1.0 True

Note that 1 May 2012 was Tuesday, so the Tuesday after the first Monday was 8 May 2012. The last Sunday in
September 2012 was the 30th.

>>> print(clnd(('23 Sep 2012','07 Oct 2012')))
Interval((266, 280)): 'D' at 2012-09-23 -> 'D' at 2012-10-07 [15]

ws_ref start duration end label on_duty
loc
266 2012-09-23 2012-09-23 1 2012-09-23 1.0 True
267 2012-09-24 2012-09-24 1 2012-09-24 0.0 False
268 2012-09-25 2012-09-25 1 2012-09-25 1.0 True
269 2012-09-26 2012-09-26 1 2012-09-26 1.0 True
270 2012-09-27 2012-09-27 1 2012-09-27 1.0 True
271 2012-09-28 2012-09-28 1 2012-09-28 1.0 True
272 2012-09-29 2012-09-29 1 2012-09-29 1.0 True
273 2012-09-30 2012-09-30 1 2012-09-30 0.0 False
274 2012-10-01 2012-10-01 1 2012-10-01 0.0 False
275 2012-10-02 2012-10-02 1 2012-10-02 0.0 False
276 2012-10-03 2012-10-03 1 2012-10-03 1.0 True
277 2012-10-04 2012-10-04 1 2012-10-04 1.0 True
278 2012-10-05 2012-10-05 1 2012-10-05 0.0 False
279 2012-10-06 2012-10-06 1 2012-10-06 0.0 False
280 2012-10-07 2012-10-07 1 2012-10-07 0.0 False

5.5 Using pattern with memory

A school administrator’s work schedule is 2 days working followed by 3 days off, with a recess from 14 Jul to 31 Aug
every year:

32 Chapter 5. Making a Timeboard

timeboard Documentation, Release 0.2

>>> year = tb.Marker(each='A',
... at=[{'months':6, 'days':13}, {'months':8}])
>>> annually = tb.Organizer(marker=year,
... structure=[[1,1,1,0,0],[-1]])
>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Jan 2016', end='31 Dec 2017',
... layout=annually,
... default_selector=lambda label: label>0)

The days of the recess are labeled with -1 to differentiate them from the regular days off. The selector for the default
schedule has been adjusted accordingly.

>>> print(clnd(('07 Jul 2016','17 Jul 2016')))
Interval((188, 198)): 'D' at 2016-07-07 -> 'D' at 2016-07-17 [11]

ws_ref start duration end label on_duty
loc
188 2016-07-07 2016-07-07 1 2016-07-07 1.0 True
189 2016-07-08 2016-07-08 1 2016-07-08 1.0 True
190 2016-07-09 2016-07-09 1 2016-07-09 1.0 True
191 2016-07-10 2016-07-10 1 2016-07-10 0.0 False
192 2016-07-11 2016-07-11 1 2016-07-11 0.0 False
193 2016-07-12 2016-07-12 1 2016-07-12 1.0 True
194 2016-07-13 2016-07-13 1 2016-07-13 1.0 True
195 2016-07-14 2016-07-14 1 2016-07-14 -1.0 False
196 2016-07-15 2016-07-15 1 2016-07-15 -1.0 False
197 2016-07-16 2016-07-16 1 2016-07-16 -1.0 False
198 2016-07-17 2016-07-17 1 2016-07-17 -1.0 False

>>> print(clnd(('27 Aug 2016','06 Sep 2016')))
Interval((239, 249)): 'D' at 2016-08-27 -> 'D' at 2016-09-06 [11]

ws_ref start duration end label on_duty
loc
239 2016-08-27 2016-08-27 1 2016-08-27 -1.0 False
240 2016-08-28 2016-08-28 1 2016-08-28 -1.0 False
241 2016-08-29 2016-08-29 1 2016-08-29 -1.0 False
242 2016-08-30 2016-08-30 1 2016-08-30 -1.0 False
243 2016-08-31 2016-08-31 1 2016-08-31 -1.0 False
244 2016-09-01 2016-09-01 1 2016-09-01 1.0 True
245 2016-09-02 2016-09-02 1 2016-09-02 1.0 True
246 2016-09-03 2016-09-03 1 2016-09-03 1.0 True
247 2016-09-04 2016-09-04 1 2016-09-04 0.0 False
248 2016-09-05 2016-09-05 1 2016-09-05 0.0 False
249 2016-09-06 2016-09-06 1 2016-09-06 1.0 True

Note that the working period before the recess has ended mid-cycle: the administrator has checked out only two (Jul
12 and Jul 13) of five days forming a complete cycle. The period after the recess started afresh with three working
days followed by two days off. This is the expected behavior as Organizer applies the next element of structure to the
next span without knowledge of any previous invocations of this element.

However, if you wish to retain the flow of administrator’s schedule as if it was uninterrupted by the recess, you may
employ RememberingPattern. This class creates a pattern which memorizes its state from previous invocations
across all organizers. It takes only one parameter - an iterable of labels.

>>> work_cycle = tb.RememberingPattern([1,1,1,0,0])
>>> year = tb.Marker(each='A',

(continues on next page)

5.5. Using pattern with memory 33

timeboard Documentation, Release 0.2

(continued from previous page)

... at=[{'months':6, 'days':13}, {'months':8}])
>>> annually = tb.Organizer(marker=year,
... structure=[work_cycle,[-1]])
>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Jan 2016', end='31 Dec 2017',

layout=annually,
default_selector=lambda x: x>0)

>>> print(clnd(('07 Jul 2016','17 Jul 2016')))
Interval((188, 198)): 'D' at 2016-07-07 -> 'D' at 2016-07-17 [11]

ws_ref start duration end label on_duty
loc
188 2016-07-07 2016-07-07 1 2016-07-07 1.0 True
189 2016-07-08 2016-07-08 1 2016-07-08 1.0 True
190 2016-07-09 2016-07-09 1 2016-07-09 1.0 True
191 2016-07-10 2016-07-10 1 2016-07-10 0.0 False
192 2016-07-11 2016-07-11 1 2016-07-11 0.0 False
193 2016-07-12 2016-07-12 1 2016-07-12 1.0 True
194 2016-07-13 2016-07-13 1 2016-07-13 1.0 True
195 2016-07-14 2016-07-14 1 2016-07-14 -1.0 False
196 2016-07-15 2016-07-15 1 2016-07-15 -1.0 False
197 2016-07-16 2016-07-16 1 2016-07-16 -1.0 False
198 2016-07-17 2016-07-17 1 2016-07-17 -1.0 False

>>> print(clnd(('27 Aug 2016','08 Sep 2016')))
Interval((239, 251)): 'D' at 2016-08-27 -> 'D' at 2016-09-08 [13]

ws_ref start duration end label on_duty
loc
239 2016-08-27 2016-08-27 1 2016-08-27 -1.0 False
240 2016-08-28 2016-08-28 1 2016-08-28 -1.0 False
241 2016-08-29 2016-08-29 1 2016-08-29 -1.0 False
242 2016-08-30 2016-08-30 1 2016-08-30 -1.0 False
243 2016-08-31 2016-08-31 1 2016-08-31 -1.0 False
244 2016-09-01 2016-09-01 1 2016-09-01 1.0 True
245 2016-09-02 2016-09-02 1 2016-09-02 0.0 False
246 2016-09-03 2016-09-03 1 2016-09-03 0.0 False
247 2016-09-04 2016-09-04 1 2016-09-04 1.0 True
248 2016-09-05 2016-09-05 1 2016-09-05 1.0 True
249 2016-09-06 2016-09-06 1 2016-09-06 1.0 True
250 2016-09-07 2016-09-07 1 2016-09-07 0.0 False
251 2016-09-08 2016-09-08 1 2016-09-08 0.0 False

The period after the recess started with a shortened cycle consisting of one working day (Sep 1) followed by two days
off (Sep 2 and 3). These days were “carried over” from the period before recess to complete the cycle started on the
12th of July.

5.6 Adjusting labels for work time

In the above examples with daily workshifts, the actual work time takes only a part of the workshift (that is, a part of
the 24 hour day). If the amount of the work time varies between on-duty workshifts (for example, Friday’s working
hours in the office are shorter), these variations cannot be inferred from workshift’s duration which is always equal to
one (day). Therefore, you have to use labels as the source of the information about work time.

34 Chapter 5. Making a Timeboard

timeboard Documentation, Release 0.2

So far we have used simplistic labeling: 0 for an off-duty day and 1 for an on-duty day. To make work time measuring
possible, the labeling scheme must be changed. The labels for off-duty days remain zero but the labels for on-duty
days will be equal to the workshift’s work time (presumably, measured in hours but this is up to the user). There is no
need to change the selector. Yet you must add worktime_source='labels' to the parameters of timeboard.

The adjusted timeboard of the museum accounts for short days in winter and longer days in summer with extended
working hours on Sunday and Mondays. The changes are in the first two lines and in the last.

>>> winter = tb.Organizer(marker='W', structure=[[0,0,6,6,0,0,0]])
>>> summer = tb.Organizer(marker='W', structure=[[0,8,8,8,8,10,10]])
>>> seasons = tb.Marker(each='A',
... at=[{'month':5, 'weekday':1, 'week':1, 'shift':1},
... {'month':9, 'weekday':7, 'week':-1}],
... how='nth_weekday_of_month')
>>> seasonal = tb.Organizer(marker=seasons,
... structure=[winter, summer])
>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Jan 2012', end='31 Dec 2015',
... layout=seasonal,
... worktime_source='labels')

5.7 Workshifts of varying length

Let us modify the schedule of the 24x7 call center. Now the call center’s staff operate in shifts of varying length: 08:00
to 18:00 (10 hours), 18:00 to 02:00 (8 hours), and 02:00 to 08:00 (6 hours). An operator’s schedule consists of one
on-duty shift followed by three off-duty shifts. Hence, four teams of operators are needed. They are designated as ‘A’,
‘B’, ‘C’, and ‘D’.

To accommodate periods of varying length you need to use compound workshifts. A compound workshift consists of
several base units.

Note: See also Compound Workshifts section in Data Model for the discussion about why and when you need
compound workshifts.

Compound workshift is created from a span when a corresponding element of structure is neither a pattern nor an
organizer. The value of such element is considered the label for the compound workshift. The workshift consists of
all base units of the corresponding span.

>>> day_parts = tb.Marker(each='D',
... at=[{'hours':2}, {'hours':8}, {'hours':18}])
>>> shifts = tb.Organizer(marker=day_parts, structure=['A', 'B', 'C', 'D'])
>>> clnd = tb.Timeboard(base_unit_freq='H',
... start='02 Oct 2017 08:00', end='07 Oct 2017 01:59',
... layout=shifts)
>>> clnd.add_schedule(name='team_A', selector=lambda label: label=='A')

>>>print(clnd)
Timeboard of 'H': 2017-10-02 08:00 -> 2017-10-07 01:00

ws_ref ... dur. end label on_duty team_A
loc ...
0 2017-10-02 08:00:00 ... 10 2017-10-02 17:59:59 A True True
1 2017-10-02 18:00:00 ... 8 2017-10-03 01:59:59 B True False
2 2017-10-03 02:00:00 ... 6 2017-10-03 07:59:59 C True False

(continues on next page)

5.7. Workshifts of varying length 35

timeboard Documentation, Release 0.2

(continued from previous page)

3 2017-10-03 08:00:00 ... 10 2017-10-03 17:59:59 D True False
4 2017-10-03 18:00:00 ... 8 2017-10-04 01:59:59 A True True
5 2017-10-04 02:00:00 ... 6 2017-10-04 07:59:59 B True False
6 2017-10-04 08:00:00 ... 10 2017-10-04 17:59:59 C True False
7 2017-10-04 18:00:00 ... 8 2017-10-05 01:59:59 D True False
8 2017-10-05 02:00:00 ... 6 2017-10-05 07:59:59 A True True
9 2017-10-05 08:00:00 ... 10 2017-10-05 17:59:59 B True False
10 2017-10-05 18:00:00 ... 8 2017-10-06 01:59:59 C True False
11 2017-10-06 02:00:00 ... 6 2017-10-06 07:59:59 D True False
12 2017-10-06 08:00:00 ... 10 2017-10-06 17:59:59 A True True
13 2017-10-06 18:00:00 ... 8 2017-10-07 01:59:59 B True False

The "start" column has been omitted and "duration" squeezed to fit
the output to the page

5.7.1 Example: Call center closing on weekends

We proceed with elaborating upon the schedule of the call center. In this example we employ all the tools we have at
hand.

Suppose that the call center is located in Europe and supports traders doing business on stock exchanges around the
world. Since markets are closed on Saturdays and Sundays, there is no need to staff the call center from 2:00 on
Saturday (New York closes) to 2:00 on Monday (Tokyo opens).

To adjust the timeboard to this specific schedule, we need to modify the timeline in such a way that it takes into account
days of the week. This job is carried out by marker week and organizer weekly.

Moreover, we will need a RememberingPattern to ensure that the order of the team rotation is not disrupted
by weekends. Without RememberingPattern the first shift of each week will be always assigned to team A
regardless of what team has staffed the last shift on the previous week.

>>> shifts_order = tb.RememberingPattern(['A', 'B', 'C', 'D'])
>>> day_parts = tb.Marker(each='D',
... at=[{'hours':2}, {'hours':8}, {'hours':18}])
>>> shifts = tb.Organizer(marker=day_parts, structure=shifts_order)
>>> week = tb.Marker(each='W',
... at=[{'days':0, 'hours':2}, {'days':5, 'hours':2}])
>>> weekly = tb.Organizer(marker=week, structure=[0, shifts])
>>> clnd = tb.Timeboard(base_unit_freq='H',
... start='02 Oct 2017 00:00', end='10 Oct 2017 01:59',
... layout=weekly)
>>> clnd.add_schedule(name='team_A', selector=lambda label: label=='A')
>>>
>>> print(clnd)
Timeboard of 'H': 2017-10-02 00:00 -> 2017-10-10 01:00

ws_ref ... dur. end label on_duty team_A
loc ...
0 2017-10-02 00:00:00 ... 2 2017-10-02 01:59:59 0 False False
1 2017-10-02 02:00:00 ... 6 2017-10-02 07:59:59 A True True
2 2017-10-02 08:00:00 ... 10 2017-10-02 17:59:59 B True False
3 2017-10-02 18:00:00 ... 8 2017-10-03 01:59:59 C True False
4 2017-10-03 02:00:00 ... 6 2017-10-03 07:59:59 D True False
5 2017-10-03 08:00:00 ... 10 2017-10-03 17:59:59 A True True
6 2017-10-03 18:00:00 ... 8 2017-10-04 01:59:59 B True False

(continues on next page)

36 Chapter 5. Making a Timeboard

timeboard Documentation, Release 0.2

(continued from previous page)

7 2017-10-04 02:00:00 ... 6 2017-10-04 07:59:59 C True False
8 2017-10-04 08:00:00 ... 10 2017-10-04 17:59:59 D True False
9 2017-10-04 18:00:00 ... 8 2017-10-05 01:59:59 A True True
10 2017-10-05 02:00:00 ... 6 2017-10-05 07:59:59 B True False
11 2017-10-05 08:00:00 ... 10 2017-10-05 17:59:59 C True False
12 2017-10-05 18:00:00 ... 8 2017-10-06 01:59:59 D True False
13 2017-10-06 02:00:00 ... 6 2017-10-06 07:59:59 A True True
14 2017-10-06 08:00:00 ... 10 2017-10-06 17:59:59 B True False
15 2017-10-06 18:00:00 ... 8 2017-10-07 01:59:59 C True False
16 2017-10-07 02:00:00 ... 48 2017-10-09 01:59:59 0 False False
17 2017-10-09 02:00:00 ... 6 2017-10-09 07:59:59 D True False
18 2017-10-09 08:00:00 ... 10 2017-10-09 17:59:59 A True True
19 2017-10-09 18:00:00 ... 8 2017-10-10 01:59:59 B True False

The "start" column has been omitted and "duration" squeezed to fit
the output to the page

Label 0 denotes the periods of time when the call center is closed: during first two hours of Monday 2 October, and
from 02:00 on Saturday 7 October through 01:59 on Monday 9 October.

The default schedule (‘on_duty’) now becomes informative as it shows the schedule of the call center as a whole. We
also added a schedule for team ‘A’. For the practical use you will want to add schedules for the other shifts but this is
not the point of this example.

The first week ends on shift ‘C’, and the next week starts with shift ‘D’, so the order of shifts is preserved which is an
essential requirement for this timeboard.

To enable measurements of work time no adjustments of the timeboard’s parameters are necessary. By default, the
work time is assumed to be equal to workshift’s duration. This is the case in this timeboard.

5.8 Caveats

5.8.1 Not all Marker frequencies are valid

Currently, UnacceptablePeriodError is raised for some combinations of base unit frequency and Marker frequency
which may result in one base unit belonging to different adjacent calendar periods marked by the Marker.

Base unit is not a subperiod

Organizing fails when base unit is not a natural subperiod of the period used by Marker, for example:

>>> org = tb.Organizer(marker='M', structure=[[1]])
>>> clnd = tb.Timeboard(base_unit_freq='W',
... start='01 Oct 2017', end='31 Dec 2017',
... layout=org)

UnacceptablePeriodError Traceback (most recent call last)

...
UnacceptablePeriodError: Ambiguous organizing: W is not a subperiod of M

Indeed, a week may start in one month, and end in another, therefore it is not obvious to which span such a base unit
should belong.

5.8. Caveats 37

timeboard Documentation, Release 0.2

Actually, week is the only such irregular calendar frequency which is not a subperiod of anything. However, it is
unlikely that week-sized base units will be a common occurrence in practice.

Base unit of multiplied frequency

Organizing fails when the base unit has a multiplied frequency (i.e. '2H') and the period used by Marker is based on
a different frequency.

This problem is less obvious and may manifest itself in some practical cases.

Consider first the legitimate code:

>>> org = tb.Organizer(marker='W', structure=[[1]])
>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='02 Oct 2017', end='15 Oct 2017',
... layout=org)
>>> print(clnd)
Timeboard of 'D': 2017-10-02 -> 2017-10-15

...

Now change base unit frequency from 'D' to '24H':

>>> org = tb.Organizer(marker='W', structure=[[1]])
>>> clnd = tb.Timeboard(base_unit_freq='24H',
... start='02 Oct 2017', end='15 Oct 2017',
... layout=org)

UnacceptablePeriodError Traceback (most recent call last)

...
UnacceptablePeriodError: Ambiguous organizing: 24H is not a subperiod of W

It failed for the following reason. A period of frequency 'D' always starts at 00:00 of a calendar day and thus is
guaranteed to be entirely within some week. A period of frequency '24H' is guaranteed to start at the beginning of
some hour but this hour is not necessarily a midnight. For example, a '24H' period may start at 20:00 of a Sunday,
therefore its first four hours will fall into one week, and the rest - into another.

Example of a real-life case impacted by this issue: workshifts beginning or ending at half past hour. You cannot use
'30T' (30 minutes) as a period for base units because you will have to organize the base units into shifts (presum-
ably, with each='D'). A workaround is to select 'T' as the base unit frequency. The side-effects are the slower
performance and the rise in memory consumption.

While you may ensure that the base units start at midnights, timeboard is not yet able to handle base unit alignments.
This is a TODO.

5.8.2 Alignment of frame may be critical

Let’s go back to the example of the call center’s timeboard with compound workshifts and weekend breaks. This is it:

>>> shifts_order = tb.RememberingPattern(['A', 'B', 'C', 'D'])
>>> day_parts = tb.Marker(each='D',
... at=[{'hours':2}, {'hours':8}, {'hours':18}])
>>> shifts = tb.Organizer(marker=day_parts, structure=shifts_order)
>>> week = tb.Marker(each='W',
... at=[{'days':0, 'hours':2}, {'days':5, 'hours':2}])
>>> weekly = tb.Organizer(marker=week, structure=[0, shifts])
>>> clnd = tb.Timeboard(base_unit_freq='H',

(continues on next page)

38 Chapter 5. Making a Timeboard

timeboard Documentation, Release 0.2

(continued from previous page)

... start='02 Oct 2017 00:00', end='10 Oct 2017 01:59',

... layout=weekly)
>>> clnd.add_schedule(name='team_A', selector=lambda label: label=='A')
>>>
>>> print(clnd)
Timeboard of 'H': 2017-10-02 00:00 -> 2017-10-10 01:00

ws_ref ... dur. end label on_duty team_A
loc ...
0 2017-10-02 00:00:00 ... 2 2017-10-02 01:59:59 0 False False
1 2017-10-02 02:00:00 ... 6 2017-10-02 07:59:59 A True True
2 2017-10-02 08:00:00 ... 10 2017-10-02 17:59:59 B True False
3 2017-10-02 18:00:00 ... 8 2017-10-03 01:59:59 C True False
4 2017-10-03 02:00:00 ... 6 2017-10-03 07:59:59 D True False
5 2017-10-03 08:00:00 ... 10 2017-10-03 17:59:59 A True True
6 2017-10-03 18:00:00 ... 8 2017-10-04 01:59:59 B True False
7 2017-10-04 02:00:00 ... 6 2017-10-04 07:59:59 C True False
8 2017-10-04 08:00:00 ... 10 2017-10-04 17:59:59 D True False
9 2017-10-04 18:00:00 ... 8 2017-10-05 01:59:59 A True True
10 2017-10-05 02:00:00 ... 6 2017-10-05 07:59:59 B True False
11 2017-10-05 08:00:00 ... 10 2017-10-05 17:59:59 C True False
12 2017-10-05 18:00:00 ... 8 2017-10-06 01:59:59 D True False
13 2017-10-06 02:00:00 ... 6 2017-10-06 07:59:59 A True True
14 2017-10-06 08:00:00 ... 10 2017-10-06 17:59:59 B True False
15 2017-10-06 18:00:00 ... 8 2017-10-07 01:59:59 C True False
16 2017-10-07 02:00:00 ... 48 2017-10-09 01:59:59 0 False False
17 2017-10-09 02:00:00 ... 6 2017-10-09 07:59:59 D True False
18 2017-10-09 08:00:00 ... 10 2017-10-09 17:59:59 A True True
19 2017-10-09 18:00:00 ... 8 2017-10-10 01:59:59 B True False

The "start" column has been omitted and "duration" squeezed to fit
the output to the page

However, if the start of the timeboard is moved to 02:00 of Monday or any time afterwards, the result will be totally
incorrect:

>>> clnd = tb.Timeboard(base_unit_freq='H',
... start='02 Oct 2017 02:00', end='10 Oct 2017 01:59',
... layout=weekly)
>>> print(clnd)
Timeboard of 'H': 2017-10-02 02:00 -> 2017-10-10 01:00

ws_ref ... duration end label on_duty
loc ...
0 2017-10-02 20:00:00 ... 102 2017-10-07 01:59:59 0 False
1 2017-10-07 02:00:00 ... 6 2017-10-07 07:59:59 C True
2 2017-10-07 08:00:00 ... 10 2017-10-07 17:59:59 D True
3 2017-10-07 18:00:00 ... 8 2017-10-08 01:59:59 A True
4 2017-10-08 02:00:00 ... 6 2017-10-08 07:59:59 B True
5 2017-10-08 08:00:00 ... 10 2017-10-08 17:59:59 C True
6 2017-10-08 18:00:00 ... 8 2017-10-09 01:59:59 D True
7 2017-10-09 02:00:00 ... 24 2017-10-10 01:59:59 0 False

What happened is the organizer having produced one span less than we expected when putting together the value of
structure. We counted on the frame being aligned with a week. Thus the first element of structure, 0, should have been
applied to the span covering the period up to 01:59 of Monday. However, when the start of the frame moved to 02:00,
the sequence of spans produced by the organizer was displaced in relation to the sequence of elements in structure.

5.8. Caveats 39

timeboard Documentation, Release 0.2

Therefore, the elements of structure are now applied to inappropriate spans.

Workarounds:

• The most obvious solution is to swap elements of structure: structure=[shifts, 0]. However, this
approach may render timeboard’s configuration less comprehensible and more error-prone especially when ele-
ments of structure are related to specific days of the week or of months.

• The better approach is to align the start of the timeboard with boundaries of all calendar frequencies used in the
timeboard’s configuration.

For example, if the base unit is an hour and 'W' and 'D' frequencies are used in organizers, start the timeboard
at 00:00 Monday. If 'M' frequency is used instead, start the timeboard at 00:00 of the first day of a month.

There is also another side effect to note. When we rebuilt the timeboard from 02:00 of Monday, you might have
noticed that the pattern of labels in this new timeboard started on ‘C’, not on ‘A’. This is because we continued to
use the same layout that eventually references RememberingPattern shifts_order which has remembered where
it stopped in the previous timeboard.

5.8.3 Specific days of month

A recurrent meeting gathers on the 10th, 20th and 30th day of the month.

The full-blown Marker-based approach is somewhat cumbersome and may produce obscure errors, like in this time-
board which breaks after April 30:

>>> days_of_month = tb.Marker(each='M',
... at=[{'days':9}, {'days':10}, {'days':19},
... {'days':20}, {'days':29}, {'days':30}])
>>> monthly = tb.Organizer(marker=days_of_month,
... structure=[[0],[1],[0],[1],[0],[1]])
>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Jan 2017', end='31 Dec 2017',
... layout=monthly)

A straightforward technique facilitated by use of numpy’s zeros is the best:

>>> import numpy as np
>>> days = np.zeros(31)
>>> days[[9,19,29]]=1
>>> monthly = tb.Organizer(marker='M',
... structure=[days])
>>> clnd = tb.Timeboard(base_unit_freq='D',
... start='01 Jan 2017', end='31 Dec 2017',
... layout=monthly)

40 Chapter 5. Making a Timeboard

CHAPTER 6

Using Preconfigured Calendars

There are a few preconfigured Timeboards that come with the package. They implement common business day calen-
dars of different countries.

To access calendars of a country you have to import the country module from timeboard.calendars, for exam-
ple:

>>> import timeboard.calendars.US as US

Then, to obtain a Timeboard implementing a required calendar, call the class for this calendar from the chosen module.
Usually, the class takes some country-specific parameters that allow tuning the calendar. For example:

>>> clnd = US.Weekly8x5(do_not_observe = {'black_friday'})

parameters() class method returns the dictionary of the parameters used to instantiate the Timeboard. Of these,
the most usable are probably parameters start and end which limit the maximum supported span of the calendar:

>>> params = US.Weekly8x5.parameters()
>>> params['start']
Timestamp('2000-01-01 00:00:00')
>>> params['end']
Timestamp('2020-12-31 23:59:59')

The currently available calendars are listed below. Consult the reference page of the calendar class to review its
parameters and examples.

Country Mod-
ule

Calendar Description

Russia RU Weekly8x5 Official calendar for 5 days x 8 hours working week with holiday ob-
servations

United King-
dom

UK Weekly8x5 Business calendar for 5 days x 8 hours working week with bank holi-
days

United States US Weekly8x5 Business calendar for 5 days x 8 hours working week with federal hol-
idays

41

timeboard Documentation, Release 0.2

42 Chapter 6. Using Preconfigured Calendars

CHAPTER 7

Doing Calculations

Table of Contents

• Obtaining a Workshift

• Workshift-based calculations

– Determining duty

– Obtaining work time

– Rolling forward and back

• Obtaining an Interval

– Caveats

• Interval-based calculations

– Seeking and counting workshifts

– Itertating over the interval

– Measuring work time

– Relation with another interval

– Counting periods

– Caveats

Calendar calculations are performed either with an individual workshift or with an interval of workshifts.

Also, each calculation is based on a specific schedule in order to reason about duty statuses of workshifts involved.

Therefore, to carry out a calculation you need to obtain either a workshift or an interval and indicate which schedule
you will be using.

The import statement to run the examples:

43

timeboard Documentation, Release 0.2

>>> import timeboard as tb

7.1 Obtaining a Workshift

Most likely you will want to identify a workshift by a timestamp which represents a point in time somewhere within
the workshift. This is done by calling Timeboard.get_workshift() . The result returned will be an instance
of Workshift.

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '11 Oct 2017',
... layout=[0, 1, 0, 2])
>>> clnd.get_workshift('01 Oct 2017')
Workshift(1) of 'D' at 2017-10-01

Even simpler, you get the same result by calling the instance of Timeboardwhich will invoke get_workshift()
for you:

>>> clnd('01 Oct 2017')
Workshift(1) of 'D' at 2017-10-01

The argument passed to get_workshift() is Timestamp-like meaning it may be a timestamp, or a string convert-
ible to timestamp, or an object which implement to_timestamp() method.

Alternatively, you can call Workshift() constructor directly if you know the workshift’s position on the timeline:

>>> tb.Workshift(clnd, 1)
Workshift(1) of 'D' at 2017-10-01

Every workshift comes with an attached schedule. This schedule is used in calculations carried out with this workshift
unless it is overridden by schedule parameter of the method called to perform the calculation.

By default, a new workshift returned by get_workshift() method or Workshift() constructor receives the
default schedule of the timeboard. You may attach a specific schedule to a new workshift by passing it in schedule
parameter:

>>> sdl = clnd.add_schedule(name='my_schedule',
... selector=lambda label: label>1)

>>> clnd.get_workshift('01 Oct 2017', schedule=sdl)
Workshift(1, my_schedule) of 'D' at 2017-10-01
>>> tb.Workshift(clnd, 1, sdl)
Workshift(1, my_schedule) of 'D' at 2017-10-01

Note: You cannot obtain a workshift by calling the instance of Timeboard if you want to attach the schedule.‘ Use
get_workshift() only.

Besides, a workshift can be obtained as a return value of a method performing a calculation over the timeboard. The
schedule attached to this workshift is the schedule used by the method which has produced the workshift.

44 Chapter 7. Doing Calculations

timeboard Documentation, Release 0.2

7.2 Workshift-based calculations

Method Result
is_on_duty() Find out if the workshift is on duty.
is_off_duty() Find out if the workshift is off duty.
worktime() Return workshift’s work time.
rollforward() Return a workshift by taking the specified number of steps toward the future.
+ (plus) Shortcut for rollforward()
rollback() Return a workshift by taking the specified number of steps toward the past.
- (minus) Shortcut for rollback()

Each of the above methods must use some schedule to identify workshift’s duty. The schedule is selected as follows:

• if a schedule is explicitly given as method’s parameter, then use this schedule;

• else use the schedule attached to this workshift when it has been instantiated;

• if no schedule parameter was given to the workshift constructor, use the default schedule of the timeboard.

7.2.1 Determining duty

Examples:

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '11 Oct 2017',
... layout=[0, 1, 0, 2])
>>> my_schedule = clnd.add_schedule(name='my_schedule',

selector=lambda label: label>1)

>>> ws1 = clnd.get_workshift('01 Oct 2017')
>>> ws2 = clnd.get_workshift('01 Oct 2017', schedule=my_schedule)

ws1 and ws2 are the same workshift but with different schedules attached. ws1 comes with the default schedule of the
timeboard, while ws2 is given my_schedule.

The workshift has label 1. Its duty under the default schedule:

>>> ws1.is_on_duty()
True
>>> ws2.is_on_duty(schedule=clnd.default_schedule)
True

and under my_schedule:

>>> ws1.is_on_duty(schedule=my_schedule)
False
>>> ws2.is_on_duty()
False

7.2.2 Obtaining work time

The source of the information about workshift’s work time is determined by Timeboard.worktime_source
attribute.

7.2. Workshift-based calculations 45

timeboard Documentation, Release 0.2

Workshift.worktime() method returns the work time of the workshift if the duty value passed to the method
corresponds to that of the workshift. Otherwise, it returns zero.

By default, the work time equals to workshift’s duration:

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '11 Oct 2017',
... layout=[4, 8, 4, 8],
... default_selector = lambda label: label>4)
>>> ws = tb.Workshift(clnd, 3)
>>> ws.label
8.0
>>> ws.duration
1
>>> ws.is_on_duty()
True
>>> ws.worktime()
1
>>> ws.worktime(duty='off')
0
>>> ws.worktime(duty='any')
1

In the example below, the work time is taken from the labels:

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '11 Oct 2017',
... layout=[4, 8, 4, 8],
... default_selector = lambda label: label>4,
... worktime_source = 'labels')

>>> ws = tb.Workshift(clnd, 3)
>>> ws.worktime()
8.0
>>> ws.worktime(duty='off')
0
>>> ws.worktime(duty='any')
8.0

>>> ws = tb.Workshift(clnd, 2)
>>> ws.label
4.0
>>> ws.is_off_duty()
True
>>> ws.worktime()
0
>>> ws.worktime(duty='off')
4.0
>>> ws.worktime(duty='any')
4.0

The query with duty='off' can be interpreted as “What is the work time for a worker who comes in when the main
workforce is off duty?”

7.2.3 Rolling forward and back

The methods rollforward() and rollback() allow to identify the workshift which is located in a specified
distance from the current workshift.

46 Chapter 7. Doing Calculations

timeboard Documentation, Release 0.2

Actually, the methods do not roll, they step. The distance is measured in a number of steps with regard to a certain
duty. It means that, when taking steps, the methods tread only on the workshifts with this duty, ignoring all others.

rollforward and rollback operate in the same manner except for the direction of time. You specify the number of steps
and the duty to tread on. The default values are steps=0, duty='on'. The algorithm has two stages.

Stage 1. If you call a method omitting the number of steps (same as steps=0) it finds the closest workshift with the
required duty.

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '11 Oct 2017',
... layout=[0, 1, 0, 2])
>>> print(clnd)
Timeboard of 'D': 2017-09-30 -> 2017-10-11

ws_ref start duration end label on_duty
loc
0 2017-09-30 2017-09-30 1 2017-09-30 0.0 False
1 2017-10-01 2017-10-01 1 2017-10-01 1.0 True
2 2017-10-02 2017-10-02 1 2017-10-02 0.0 False
3 2017-10-03 2017-10-03 1 2017-10-03 2.0 True
4 2017-10-04 2017-10-04 1 2017-10-04 0.0 False
5 2017-10-05 2017-10-05 1 2017-10-05 1.0 True
6 2017-10-06 2017-10-06 1 2017-10-06 0.0 False
7 2017-10-07 2017-10-07 1 2017-10-07 2.0 True
8 2017-10-08 2017-10-08 1 2017-10-08 0.0 False
9 2017-10-09 2017-10-09 1 2017-10-09 1.0 True
10 2017-10-10 2017-10-10 1 2017-10-10 0.0 False
11 2017-10-11 2017-10-11 1 2017-10-11 2.0 True

>>> clnd('05 Oct 2017').rollforward()
Workshift(5) of 'D' at 2017-10-05
>>> clnd('06 Oct 2017').rollforward()
Workshift(7) of 'D' at 2017-10-07

>>> clnd('05 Oct 2017').rollback()
Workshift(5) of 'D' at 2017-10-05
>>> clnd('06 Oct 2017').rollback()
Workshift(5) of 'D' at 2017-10-05

A method returns the self workshift if its duty is the same as the duty sought. Otherwise it returns the next (roll-
forward) or the previous (rollback) workshift with the required duty. The example above illustrates this behavior for
duty='on', the example below - for duty='off':

>>> clnd('05 Oct 2017').rollforward(duty='off')
Workshift(6) of 'D' at 2017-10-06
>>> clnd('06 Oct 2017').rollforward(duty='off')
Workshift(6) of 'D' at 2017-10-06

>>> clnd('05 Oct 2017').rollback(duty='off')
Workshift(4) of 'D' at 2017-10-04
>>> clnd('06 Oct 2017').rollback(duty='off')
Workshift(6) of 'D' at 2017-10-06

The result of stage 1 is called the “zero step workshift”.

Stage 2. If the number of steps is not zero, a method proceeds to stage 2. After the zero step workshift has been found
the method takes the required number of steps in the appropriate direction treading only on the workshifts with the
specified duty:

7.2. Workshift-based calculations 47

timeboard Documentation, Release 0.2

>>> clnd('05 Oct 2017').rollforward(2)
Workshift(9) of 'D' at 2017-10-09
>>> clnd('06 Oct 2017').rollforward(2)
Workshift(11) of 'D' at 2017-10-11

>>> clnd('05 Oct 2017').rollback(2)
Workshift(1) of 'D' at 2017-10-01
>>> clnd('06 Oct 2017').rollback(2)
Workshift(1) of 'D' at 2017-10-01

>>> clnd('05 Oct 2017').rollforward(2, duty='off')
Workshift(10) of 'D' at 2017-10-10
>>> clnd('06 Oct 2017').rollforward(2, duty='off')
Workshift(10) of 'D' at 2017-10-10

>>> clnd('05 Oct 2017').rollback(2, duty='off')
Workshift(0) of 'D' at 2017-09-30
>>> clnd('06 Oct 2017').rollback(2, duty='off')
Workshift(2) of 'D' at 2017-10-02

Note: If you don’t care about the duty and want to step on all workshifts, use duty='any'. This way the zero step
workshift is always self.

As with the other methods, you can override the workshift’s schedule in method’s parameter. Take note that the
returned workshift will have the schedule used by the method:

>>> my_schedule = clnd.add_schedule(name='my_schedule',
... selector=lambda label: label>1)
>>> ws = clnd('05 Oct 2017').rollforward(schedule=my_schedule)
>>> ws
Workshift(7, my_schedule) of 'D' at 2017-10-07
>>> ws.rollforward(1)
Workshift(11, my_schedule) of 'D' at 2017-10-11

Using operators + and -

You can add or subtract an integer number to/from a workshift. This is the same as calling, accordingly, rollforward
or rollback with duty='on'.

under default schedule
>>> clnd('05 Oct 2017') + 1
Workshift(7) of 'D' at 2017-10-07
>>> clnd('06 Oct 2017') - 1
Workshift(3) of 'D' at 2017-10-03

under my_schedule
>>> ws = clnd.get_workshift('05 Oct 2017', schedule=my_schedule)
>>> ws + 1
Workshift(11, my_schedule) of 'D' at 2017-10-11

48 Chapter 7. Doing Calculations

timeboard Documentation, Release 0.2

Caveats

steps can take a negative value. A method will step in the opposite direction, however, the algorithm of seeking the
zero step workshift does not change. Therefore, the results of rollforward with negative steps and rollback with the
same but positive value of steps may differ:

>>> clnd('06 Oct 2017').rollforward(-1)
Workshift(5) of 'D' at 2017-10-05
>>> clnd('06 Oct 2017').rollback(1)
Workshift(3) of 'D' at 2017-10-03

As the workshift of October 6 is off duty while method’s duty is “on” by default, the method must seek the zero step
workshift. In doing that, rollforward looks in the future and finds October 7, while rollback looks in the past and find
October 5. Then both methods take one “on-duty” step to the past and arrive at the results shown above.

The analogous behavior takes place with rollback(-n) and rollforward(n):

>>> clnd('05 Oct 2017').rollback(-1, duty='off')
Workshift(6) of 'D' at 2017-10-06
>>> clnd('05 Oct 2017').rollforward(1, duty='off')
Workshift(8) of 'D' at 2017-10-08

There is no such discrepancy if method’s duty is the same as workshift’s duty.

7.3 Obtaining an Interval

Method Result
Timeboard.
get_interval()

Create an interval with regard to specific points or periods of time: from two points in time,
or from a calendar period, or specify the starting point and the length of the interval.

calling Timeboard
instance

Shortcut for Timeboard.get_interval()

Interval() Instantiate an interval from the first and the last workshifts or from their sequence numbers
on the timeline.

Interval.
overlap()

Get an interval that is the intersection of two intervals.

* (multiplication) Shortcut for overlap()

To create an interval with regard to the specific points or periods of time call Timeboard.get_interval(). This
method takes several combinations of parameters. In most cases, you can also use a shortcut by calling the instance of
Timeboard which will invoke get_interval() for you.

Obtaining an interval from two points in time:

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '15 Oct 2017',
... layout=[0, 1, 0, 2])
>>> clnd.get_interval(('02 Oct 2017', '08 Oct 2017'))
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

Shortcut:

>>> clnd(('02 Oct 2017', '08 Oct 2017'))
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

7.3. Obtaining an Interval 49

timeboard Documentation, Release 0.2

The points in time come as a tuple of two values which are timestamps, or strings convertible to timestamps, or objects
which implement to_timestamp() method.

Note that the points in time are not the boundaries of the interval but references to the first and the last workshifts of
the interval. The points in time may be located anywhere within these workshifts. The following operation produces
the same interval as the one above:

>>> clnd.get_interval(('02 Oct 2017 15:15', '08 Oct 2017 23:59'))
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

You may also pass a null value (such as None, NaN, or NaT) in place of a point in time. If the first element of the
tuple is null, then the interval will start on the first workshift of the timeboard. If the second element is null, then the
interval will end on the last workshift of the timeboard.

>>> clnd.get_interval((None, '08 Oct 2017 23:59'))
Interval((0, 8)): 'D' at 2017-09-30 -> 'D' at 2017-10-08 [9]
>>> clnd(('02 Oct 2017 15:15', None))
Interval((2, 15)): 'D' at 2017-10-02 -> 'D' at 2017-10-15 [14]

Building an interval of a specified length:

>>> clnd.get_interval('02 Oct 2017', length=7)
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

Shortcut:

>>> clnd('02 Oct 2017', length=7)
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

Obtaining an interval from a calendar period:

>>> clnd.get_interval('05 Oct 2017', period='W')
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

Shortcut:

>>> clnd('05 Oct 2017', period='W')
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

You can also build an interval directly from pandas.Period object but the shortcut is not available:

>>> import pandas as pd
>>> p = pd.Period('05 Oct 2017', freq='W')
>>> clnd.get_interval(p)
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

NO shortcut!

>>> clnd(p)
Workshift(2) of 'D' at 2017-10-02

Finally, you can convert the entire timeline into the interval:

>>> clnd.get_interval()
Interval((0, 15)): 'D' at 2017-09-30 -> 'D' at 2017-10-15 [16]

Shortcut:

(continues on next page)

50 Chapter 7. Doing Calculations

timeboard Documentation, Release 0.2

(continued from previous page)

>>> clnd()
Interval((0, 15)): 'D' at 2017-09-30 -> 'D' at 2017-10-15 [16]

Alternatively, you can call Interval() constructor directly if you have got the first and the last workshifts of the
interval or know their sequence numbers on the timeline:

>>> ws_first = clnd('02 Oct 2017')
>>> ws_first
Workshift(2) of 'D' at 2017-10-02
>>> ws_last = clnd('08 Oct 2017')
>>> ws_last
Workshift(8) of 'D' at 2017-10-08

>>> tb.Interval(clnd, (ws_first, ws_last))
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

>>> tb.Interval(clnd, (2, 8))
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

If you have got two intervals you can obtain an interval representing their intersection by calling overlap() on any
of the two while passing the other as the parameter:

>>> ivl = tb.Interval(clnd, (2, 8))
>>> other = tb.Interval(clnd, (6, 10))

>>> ivl.overlap(other)
Interval((6, 8)): 'D' at 2017-10-06 -> 'D' at 2017-10-08 [3]

As a shortcut, * (multiplication) operator can be used:

>>> ivl * other
Interval((6, 8)): 'D' at 2017-10-06 -> 'D' at 2017-10-08 [3]

Every interval comes with an attached schedule. This schedule is used in calculations carried out with this interval
unless it is overridden by schedule parameter of the method called to perform the calculation.

By default, a new interval receives the default schedule of the timeboard or inherits the schedule from its parent interval
(i.e. from the interval on which overlap() has been called).

You may attach a specific schedule to a new interval by passing it in schedule parameter of any method you use to
instantiate an interval:

>>> my_schedule = clnd.add_schedule(name='my_schedule',
... selector=lambda label: label>1)

>>> clnd(('02 Oct 2017', '08 Oct 2017'), schedule=my_schedule)
Interval((2, 8), my_schedule): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]
>>> tb.Interval(clnd, (2,8), schedule=my_schedule)
Interval((2, 8), my_schedule): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]
>>> ivl.overlap(other, schedule=my_schedule)
Interval((6, 8), my_schedule): 'D' at 2017-10-06 -> 'D' at 2017-10-08 [3]

7.3.1 Caveats

There are a few caveats when you instantiate an interval from a calendar period.

7.3. Obtaining an Interval 51

timeboard Documentation, Release 0.2

Period extends beyond timeline

If the calendar period extends beyond the timeline, the interval is created as the intersection of the timeline and the
calendar period.

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '15 Oct 2017',
... layout=[0, 1, 0, 2])
>>> clnd('Oct 2017', period='M')
Interval(1, 15): 'D' at 2017-10-01 -> 'D' at 2017-10-15 [15]

There is a parameter called clip_period which determines how this situation is handled. By default
clip_period=True which results in the behavior illustrated above. If it is set to False, PartialOutOfBoundsError
is raised:

>>> clnd('Oct 2017', period='M', clip_period=False)

PartialOutOfBoundsError Traceback (most recent call last)

...
PartialOutOfBoundsError: The right bound of interval referenced by `Oct
2017` is outside Timeboard of 'D': 2017-09-30 -> 2017-10-15

Workshift straddles period boundary

Consider the following timeboard:

>>> clnd = tb.Timeboard('12H', '01 Oct 2017 21:00', '03 Oct 2017',
... layout=[1])
>>> print(clnd)

ws_ref start duration end
loc
0 2017-10-01 21:00:00 2017-10-01 21:00:00 1 2017-10-02 08:59:59
1 2017-10-02 09:00:00 2017-10-02 09:00:00 1 2017-10-02 20:59:59
2 2017-10-02 21:00:00 2017-10-02 21:00:00 1 2017-10-03 08:59:59

columns "label" and "on_duty" have been omitted to fit the output
to the page

Suppose we want to build an interval corresponding to the day of October 2. The workshifts at locations 0 and 2
straddle the boundaries of the day: they partly lay within October 2 and partly - without.

This ambiguity is solved with Timeboard.workshift_ref attribute. The workshift is considered a member of
the calendar period where its reference timestamp belongs. By default, workshift’s reference timestamp is its start
time (workshift_ref='start'). This is shown in column ‘workshift’ in the output above. Hence, workshift’s
membership in a calendar period is determined by its start time. In our timeboard, consequently, workshift 0 belongs
to October 1 while workshift 2 stays with October 2:

>>> clnd('02 Oct 2017', period='D')
Interval((1, 2)): '12H' at 2017-10-02 09:00 -> '12H' at 2017-10-02 21:00 [2]

Note the change in ‘workshift’ column in the output below when workshift_ref='end':

>>> clnd = tb.Timeboard('12H', '01 Oct 2017 21:00', '03 Oct 2017',
... layout=[1],
... ws_ref_ref='end')
>>> print(clnd)

(continues on next page)

52 Chapter 7. Doing Calculations

timeboard Documentation, Release 0.2

(continued from previous page)

Timeboard of '12H': 2017-10-01 21:00 -> 2017-10-02 21:00

ws_ref start duration end
loc
0 2017-10-02 08:59:59 2017-10-01 21:00:00 1 2017-10-02 08:59:59
1 2017-10-02 20:59:59 2017-10-02 09:00:00 1 2017-10-02 20:59:59
2 2017-10-03 08:59:59 2017-10-02 21:00:00 1 2017-10-03 08:59:59

columns "label" and "on_duty" have been omitted to fit the output
to the page

In this way, the end time of workshift is used as the indicator of period membership. Workshift 0 becomes a member
of October 2 while workshift 2 goes with October 3:

>>> clnd('02 Oct 2017', period='D')
Interval((0, 1)): '12H' at 2017-10-01 21:00 -> '12H' at 2017-10-02 09:00 [2]

Due to the skewed workshift alignment, in both cases the boundaries of the produced interval do not coincide with the
period given as the interval reference (the day of October 2).

Period too short for workshifts

In a corner case, you can try to obtain an interval from a period which is shorter than the workshifts in this area of the
timeline. For example, in a timeboard with daily workshifts you seek an interval defined by an hour:

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '05 Oct 2017', layout=[1])
>>> ivl = clnd.get_interval('02 Oct 2017 00:00', period='H')

However meaningless, this operation is handled according to the same logic of attributing a workshift to the period as
discussed in the previous section. In this timeboard, the workshift reference time is its start time (the default setting).
The hour starting at 02 Oct 2017 00:00 contains the reference time of the daily workshift of October 2. Technically,
this one-day workshift is the member of the one-hour period and, therefore, becomes the only element of the sought
interval:

>>> print(ivl)
Interval((2, 2)): 'D' at 2017-10-02 -> 'D' at 2017-10-02 [1]

ws_ref start duration end label on_duty
loc
2 2017-10-02 2017-10-02 1 2017-10-02 1.0 True

On the other hand, if you try to obtain an interval from another hour of the same day, VoidIntervalError will be raised
as no workshift has its reference time within that hour:

>>> clnd.get_interval('02 Oct 2017 01:00', period='H')

VoidIntervalError Traceback (most recent call last)

...
VoidIntervalError: Attempted to create reversed or void interval
referenced by `02 Oct 2017 01:00` within Timeboard of 'D': 2017-09-30 ->
2017-10-05

7.3. Obtaining an Interval 53

timeboard Documentation, Release 0.2

7.4 Interval-based calculations

Method Result
nth() Find n-th workshift with the specified duty in the interval.
first() Find the first workshift with the specified duty in the interval.
last() Find the last workshift with the specified duty in the interval.
workshifts() Iterate through workshifts with the specified duty.
count() Count workshifts with the specified duty in the interval.
worktime() The total work time of workshifts with the specified duty.
what_portion_of() What portion of another interval this interval takes up.
/ (division) Shortcut for what_portion_of()
count_periods() How many calendar periods fit into the interval.

All methods are duty-aware meaning that they “see” only workshifts with the specified duty ignoring the others.

Each of the above methods must use some schedule to identify workshift’s duty. The schedule is selected as follows:

• if a schedule is explicitly given as method’s parameter, then use this schedule;

• else use the schedule attached to this interval when it has been instantiated;

• if no schedule parameter was given to the interval constructor, use the default schedule of the timeboard.

Note: If you don’t care about the duty and want to take into account all workshifts in the interval, use duty='any'.

7.4.1 Seeking and counting workshifts

Create an interval for the examples:

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '15 Oct 2017',
... layout=[0, 1, 0, 2])
>>> ivl = clnd(('02 Oct 2017', '08 Oct 2017'))
>>> print(ivl)
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

ws_ref start duration end label on_duty
loc
2 2017-10-02 2017-10-02 1 2017-10-02 0.0 False
3 2017-10-03 2017-10-03 1 2017-10-03 2.0 True
4 2017-10-04 2017-10-04 1 2017-10-04 0.0 False
5 2017-10-05 2017-10-05 1 2017-10-05 1.0 True
6 2017-10-06 2017-10-06 1 2017-10-06 0.0 False
7 2017-10-07 2017-10-07 1 2017-10-07 2.0 True
8 2017-10-08 2017-10-08 1 2017-10-08 0.0 False

Seeking and counting with duty='on':

>>> ivl.first()
Workshift(3) of 'D' at 2017-10-03
>>> ivl.nth(1)
Workshift(5) of 'D' at 2017-10-05
>>> ivl.last()
Workshift(7) of 'D' at 2017-10-07

(continues on next page)

54 Chapter 7. Doing Calculations

timeboard Documentation, Release 0.2

(continued from previous page)

>>> ivl.count()
3

With duty='off':

>>> ivl.first(duty='off')
Workshift(2) of 'D' at 2017-10-02
>>> ivl.nth(1, duty='off')
Workshift(4) of 'D' at 2017-10-04
>>> ivl.last(duty='off')
Workshift(8) of 'D' at 2017-10-08
>>> ivl.count(duty='off')
4

With duty='on' under another schedule:

>>> my_schedule = clnd.add_schedule(name='my_schedule',
... selector=lambda label: label>1)
>>> ivl.nth(1, schedule=my_schedule)
Workshift(7, my_schedule) of 'D' at 2017-10-07
>>> ivl.count(duty='on', schedule=my_schedule)
2

Not taking the duty into account:

>>> ivl.first(duty='any')
Workshift(2) of 'D' at 2017-10-02
>>> ivl.nth(1, duty='any')
Workshift(3) of 'D' at 2017-10-03
>>> ivl.last(duty='any')
Workshift(8) of 'D' at 2017-10-08
>>> ivl.count(duty='any')
7

7.4.2 Itertating over the interval

workshifts() returns a generator that iterates over the interval and yields workshifts with the specified duty. By
default, the duty is “on”.

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '15 Oct 2017',
... layout=[0, 1, 0, 2])
>>> ivl = clnd(('02 Oct 2017', '08 Oct 2017'))
>>> print(ivl)
Interval((2, 8)): 'D' at 2017-10-02 -> 'D' at 2017-10-08 [7]

ws_ref start duration end label on_duty
loc
2 2017-10-02 2017-10-02 1 2017-10-02 0.0 False
3 2017-10-03 2017-10-03 1 2017-10-03 2.0 True
4 2017-10-04 2017-10-04 1 2017-10-04 0.0 False
5 2017-10-05 2017-10-05 1 2017-10-05 1.0 True
6 2017-10-06 2017-10-06 1 2017-10-06 0.0 False
7 2017-10-07 2017-10-07 1 2017-10-07 2.0 True
8 2017-10-08 2017-10-08 1 2017-10-08 0.0 False

7.4. Interval-based calculations 55

timeboard Documentation, Release 0.2

>>> for ws in ivl.workshifts():
... print("{}\t{}".format(ws.start_time, ws.label))
2017-10-03 00:00:00 2
2017-10-05 00:00:00 1
2017-10-07 00:00:00 2

>>> list(ivl.workshifts(duty='off'))
[Workshift(2) of 'D' at 2017-10-02,
Workshift(4) of 'D' at 2017-10-04,
Workshift(6) of 'D' at 2017-10-06,
Workshift(8) of 'D' at 2017-10-08]

You can also use the interval itself as a generator that yields every workshift of the interval. This is the same generator
as returned by ivl.workshifts(duty='any').

>>> for ws in ivl:
... print("{}\t{}".format(ws.start_time, ws.label))
2017-10-02 00:00:00 0
2017-10-03 00:00:00 2
2017-10-04 00:00:00 0
2017-10-05 00:00:00 1
2017-10-06 00:00:00 0
2017-10-07 00:00:00 2
2017-10-08 00:00:00 0

>>> list(ivl.workshifts(duty='any'))
[Workshift(2) of 'D' at 2017-10-02,
Workshift(3) of 'D' at 2017-10-03,
Workshift(4) of 'D' at 2017-10-04,
Workshift(5) of 'D' at 2017-10-05,
Workshift(6) of 'D' at 2017-10-06,
Workshift(7) of 'D' at 2017-10-07,
Workshift(8) of 'D' at 2017-10-08]

7.4.3 Measuring work time

The source of the information about workshifts’ work time is determined by Timeboard.worktime_source
attribute.

Interval.worktime() method returns the sum of the work times of the workshifts with the specified duty. If the
interval does not contain workshifts with this duty, the method returns zero.

By default, workshift’s work time equals to workshift’s duration:

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '11 Oct 2017',
... layout=[4, 8, 4, 8],
... default_selector = lambda label: label>4)
>>> ivl = tb.Interval(clnd, (1, 3))
>>> print (ivl)
Interval((1, 3)): 'D' at 2017-10-01 -> 'D' at 2017-10-03 [3]

ws_ref start duration end label on_duty
loc
1 2017-10-01 2017-10-01 1 2017-10-01 8.0 True
2 2017-10-02 2017-10-02 1 2017-10-02 4.0 False
3 2017-10-03 2017-10-03 1 2017-10-03 8.0 True

56 Chapter 7. Doing Calculations

timeboard Documentation, Release 0.2

>>> ivl.worktime()
2
>>> ivl.worktime(duty='off')
1
>>> ivl.worktime(duty='any')
3

In the example below, the work time is taken from the labels:

>>> clnd = tb.Timeboard('D', '30 Sep 2017', '11 Oct 2017',
... layout=[4, 8, 4, 8],
... default_selector = lambda label: label>4,
... worktime_source = 'labels')
>>> ivl = tb.Interval(clnd, (1, 3))

>>> ivl.worktime()
16.0
>>> ivl.worktime(duty='off')
4.0
>>> ivl.worktime(duty='any')
20.0

Note: To count the total duration of the workshifts in the interval (regardless of the work time) call Interval.
total_duration().

7.4.4 Relation with another interval

what_portion_of() builds the intersection of this interval and another and returns the ratio of the workshift count
in the intersection to the workshift count in the other interval. Only workshifts with the specified duty are counted.

If the two intervals do not overlap or their intersection contains no workshifts with the specified duty, zero is returned.

The common use of this method is to answer questions like “what portion of year 2017 has employee X been with the
company?”. In the examples below, for the purpose of demonstration, the question is scaled down to “what portion of
the week?..”:

>>> clnd = tb.Timeboard('D', '02 Oct 2017', '15 Oct 2017',
... layout=[1, 1, 1, 1, 1, 0, 0])
>>> week1 = clnd('02 Oct 2017', period='W')

week1 contains five working days and two days off.

>>> X_in_staff = clnd(('05 Oct 2017', '07 Oct 2017'))

X was was with the company Thursday through Saturday of week1 (two working days and one day off).

>>> .what_portion_of(week1)
0.4
>>> 2 / 5 # working days
0.4

>>> X_in_staff.what_portion_of(week1, duty='off')
0.5

(continues on next page)

7.4. Interval-based calculations 57

timeboard Documentation, Release 0.2

(continued from previous page)

>>> 1 / 2 # days off
0.5

>>> X_in_staff.what_portion_of(week1, duty='any')
0.42857142857142855
>>> 3 / 7 # all days
0.42857142857142855

You can use / (division) operator as a shortcut. It calls what_portion_of() with the default parameter values (so, the
duty is ‘on’):

>>> X_in_staff / week1
0.4

X had already left before week2 started:

>>> week2 = clnd('09 Oct 2017', period='W')
>>> X_in_staff.what_portion_of(week2, duty='any')
0.0

Y has worked the entire week1 and stayed afterwards:

>>> Y_in_staff = clnd(('02 Oct 2017', '11 Oct 2017'))
>>> decade.what_portion_of(week1)
1.0

A corner case:

>>> weekend = clnd(('07 Oct 2017', '08 Oct 2017'))

All days of weekend are also the days of week1 but they are not working days, so:

>>> weekend.what_portion_of(week1)
0.0

However, weekend contains all off-duty days of week1:

>>> weekend.what_portion_of(week1, duty='off')
1.0

7.4.5 Counting periods

Call count_periods() to find out how many calendar periods of the specific frequency fit into the interval. As
with the other methods, the duty of workshifts is taken into account. The method returns a float number.

To obtain the result, the interval is sliced into calendar periods of the given frequency and then each slice of the
interval is compared to its corresponding period duty-wise. That is to say, the count of workshifts in the interval’s slice
is divided by the total count of workshifts in the period containing this slice but only workshifts with the specified duty
are counted. The quotients for each period are summed to produce the return value of the method.

If some period does not contain workshifts of the required duty, it contributes zero to the returned value.

Regardless of the period frequency, the method returns 0.0 if there are no workshifts with the specified duty in the
interval.

58 Chapter 7. Doing Calculations

timeboard Documentation, Release 0.2

The common use of this method is to answer questions like “Exactly, how many years has X worked in the company?”
In the examples below, for the purpose of demonstration, the question is scaled down to “how many days?..” for a
timeboard with hourly shifts.

Examples:

>>> clnd = tb.Timeboard('H', '01 Oct 2017', '08 Oct 2017 23:59',
... layout=[0, 1, 0, 2])
>>> X_in_staff = clnd(('01 Oct 2017 13:00', '02 Oct 2017 23:59'))

X’s tenure spans two days: it contains 11 of 24 workshifts of October 1, and all 24 workshifts of October 2:

>>> X_in_staff.count_periods('D', duty='any')
1.4583333333333333
>>> 11.0/24 + 24.0/24
1.4583333333333333

The timeboard’s layout defines that all workshifts taking place on even hours are off duty, and those on odd hours are
on duty. The first workshift of the interval (01 October 13:00 - 13:59) is on duty. Hence, interval X_in_staff contains
6 of 12 on-duty workshifts of October 1, and all 12 on-duty workshifts of October 2:

>>> X_in_staff.count_periods('D')
1.5
>>> 6.0/12 + 12.0/12
1.5

The interval contains 5 of 12 off-duty workshifts of October 1, and all 12 off-duty workshifts of October 2:

>>> X_in_staff.count_periods('D', duty='off')
1.4166666666666667
>>> 5.0/12 + 12.0/12
1.4166666666666667

If we change the schedule to my_schedule, on-duty workshifts will start only at 3, 7, 11, 15, 19, and 23 o’clock yielding
6 on-duty workshifts per day. Interval X_in_staff will contain 3/6 + 6/6 on-duty days and 8/18 + 18/18 off-duty days:

>>> my_schedule = clnd.add_schedule(name='my_schedule',
... selector=lambda label: label>1)

>>> X_in_staff.count_periods('D', schedule=my_schedule)
1.5
>>> 3.0/6 + 6.0/6
1.5
>>> X_in_staff.count_periods('D', duty='off', schedule=my_schedule)
1.4444444444444444
>>> 8.0/18 + 18.0/18
1.4444444444444444

Note that an interval containing exactly one calendar period with regard to some duty may be larger than this period,
as well as smaller:

Interval of 25 hours
>>> ivl = clnd(('01 Oct 2017 00:00', '02 Oct 2017 00:59'))
>>> ivl
Interval((0, 24)): 'H' at 2017-10-01 00:00 -> 'H' at 2017-10-02 00:00 [25]
>>> ivl.count_periods('D')
1.0

7.4. Interval-based calculations 59

timeboard Documentation, Release 0.2

Interval of 23 hours
>>> ivl = clnd(('01 Oct 2017 01:00', '01 Oct 2017 23:59'))
>>> ivl
Interval((1, 23)): 'H' at 2017-10-01 01:00 -> 'H' at 2017-10-01 23:00 [23]
>>> ivl.count_periods('D')
1.0

7.4.6 Caveats

Period extends beyond timeline

Consider the timeboard and two intervals:

>>> clnd = tb.Timeboard('H', '01 Oct 2017', '08 Oct 2017 23:59',
... layout=[0, 1, 0, 2])
>>> ivl1 = clnd(('02 Oct 2017 00:00', '02 Oct 2017 23:59'))
>>> ivl2 = clnd(('01 Oct 2017 13:00', '02 Oct 2017 23:59'))

We can count how many weeks are in interval ivl1 but not in ivl2.

All workshifts of ivl1 belong to the week of October 2 - 8 which is situated entirely within the timeboard. On the other
hand, in ivl2 there are the workshifts belonging to the week of September 25 - October 1. This week extends beyond
the timeboard. We may not guess what layout could be applied to the workshifts of Sep 25 - Sep 30 if the week were
included in the timeboard entirely. We are not authorized to extrapolate the existing layout outside the timeboard.
Moreover, for some complex layouts, any attempt at extrapolation would be ambiguous.

>>> ivl1.count_periods('W')
0.14285714285714285
>>> ivl2.count_periods('W')

PartialOutOfBoundsError Traceback (most recent call last)

...
PartialOutOfBoundsError: The left bound of interval or period referenced by `2017-09-
→˓25/2017-10-01` is outside Timeboard of 'H': 2017-10-01 00:00 -> 2017-10-08 23:00

Workshift straddles period boundary

This case is analogous to the already reviewed issue of constructing an interval from a calendar period.
Timeboard.workshift_ref attribute is used to identify workshift’s membership in a period.

Period too short for workshifts

If you try to count periods which are shorter than (some) of the workshifts in the interval, you are likely to encounter
a period which does not contain any workshift’s reference whatever the duty. This makes any result meaningless and,
consequently, UnacceptablePeriodError is raised.

You may accidentally run into this issue in two situations:

• You use compound workshifts and while most of the workshifts (usually those covering the working time) are
of one size, there are a few workshifts (usually those covering the closed time) which are much larger. Trying
to count periods, you have in mind the smaller workshifts. If a larger one gets into the interval and your period
is not long enough, you will find yourself with UnacceptablePeriodError.

60 Chapter 7. Doing Calculations

timeboard Documentation, Release 0.2

• You have misinterpreted the purpose of count_periods()method and try to use it as a general time counter.
For example, in a timeboard with workshifts of varying duration measured in hours, you want to find out how
many clock hours there are in an interval. In order to do that use pandas.Timedelta tools with start_time and
end_time attributes of workshifts and intervals.

7.4. Interval-based calculations 61

timeboard Documentation, Release 0.2

62 Chapter 7. Doing Calculations

CHAPTER 8

Common Use Cases

Table of Contents

• Setting up the calendar

• Determining deadlines

• Generating shift schedule

• Average annual headcount

• Calculating wages and salaries payable

– Periodic salary

– Per-shift wage

– Hourly pay

• Calculating bonus based on time worked

This document contains code snippets for the common use cases of timeboard library. It is also available as a
jupyter notebook.

The import statements for all examples are:

[1]: import timeboard as tb
import pandas as pd

Note: We will use pandas dataframes to store the data we work with.

8.1 Setting up the calendar

Two types of calendars are used in the examples: a standard business day calendar and a timeboard of shifts in a
24x7 call center. The detailed explanations how to create these or other timeboards are given in Making a Timeboard

63

_downloads/use_cases.ipynb

timeboard Documentation, Release 0.2

section. Calculations are performed similarly for any type of timeboard.

To obtain a standard business day calendar we use the built-ins:

[2]: import timeboard.calendars.RU as RU
clnd_ru = RU.Weekly8x5()

import timeboard.calendars.UK as UK
clnd_uk = UK.Weekly8x5(country='england')

A sample of the UK calendar clnd_uk is shown below. It starts on Monday, the 17th of April, which was a holiday
(Easter Monday), and ends on Monday the 24th, a regular business day.

Note: We take advantage of the nice formatting that jupyter notebooks provide for pandas dataframes. Instead of
official print(clnd_uk(('17 Apr 2017', '24 Apr 2017'))), we will convert the interval to dataframe
and let jupyter display its contents.

[3]: clnd_uk(('17 Apr 2017', '24 Apr 2017')).to_dataframe()

[3]: ws_ref start duration end label on_duty
loc
6316 2017-04-17 2017-04-17 1 2017-04-17 0 False
6317 2017-04-18 2017-04-18 1 2017-04-18 8 True
6318 2017-04-19 2017-04-19 1 2017-04-19 8 True
6319 2017-04-20 2017-04-20 1 2017-04-20 8 True
6320 2017-04-21 2017-04-21 1 2017-04-21 8 True
6321 2017-04-22 2017-04-22 1 2017-04-22 0 False
6322 2017-04-23 2017-04-23 1 2017-04-23 0 False
6323 2017-04-24 2017-04-24 1 2017-04-24 8 True

Our call center operates round-the-clock in shifts of varying length: 08:00 to 18:00 (10 hours), 18:00 to 02:00 (8
hours), and 02:00 to 08:00 (6 hours). An operator’s schedule consists of one on-duty shift followed by three off-duty
shifts. Hence, four teams of operators are needed. They are designated as ‘A’, ‘B’, ‘C’, and ‘D’. Timeboard clnd_cc
for the call center is built by the following code.

[4]: teams = ['A', 'B', 'C', 'D']
day_parts = tb.Marker(each='D',

at=[{'hours':2}, {'hours':8}, {'hours':18}])
shifts = tb.Organizer(marker=day_parts, structure=teams)
clnd_cc = tb.Timeboard(base_unit_freq='H',

start='01 Jan 2009 02:00', end='01 Jan 2019 01:59',
layout=shifts)

for team in teams:
clnd_cc.add_schedule(name='team_'+ team,

selector=lambda label, team=team: label==team)

A sample of clnd_cc for the week of 17 April 2017 is shown below.

[5]: clnd_cc(('17 Apr 2017 2:00', '24 Apr 2017')).to_dataframe()

[5]: ws_ref start duration end \
loc
9084 2017-04-17 02:00:00 2017-04-17 02:00:00 6 2017-04-17 07:59:59
9085 2017-04-17 08:00:00 2017-04-17 08:00:00 10 2017-04-17 17:59:59
9086 2017-04-17 18:00:00 2017-04-17 18:00:00 8 2017-04-18 01:59:59
9087 2017-04-18 02:00:00 2017-04-18 02:00:00 6 2017-04-18 07:59:59
9088 2017-04-18 08:00:00 2017-04-18 08:00:00 10 2017-04-18 17:59:59
9089 2017-04-18 18:00:00 2017-04-18 18:00:00 8 2017-04-19 01:59:59
9090 2017-04-19 02:00:00 2017-04-19 02:00:00 6 2017-04-19 07:59:59

(continues on next page)

64 Chapter 8. Common Use Cases

timeboard Documentation, Release 0.2

(continued from previous page)

9091 2017-04-19 08:00:00 2017-04-19 08:00:00 10 2017-04-19 17:59:59
9092 2017-04-19 18:00:00 2017-04-19 18:00:00 8 2017-04-20 01:59:59
9093 2017-04-20 02:00:00 2017-04-20 02:00:00 6 2017-04-20 07:59:59
9094 2017-04-20 08:00:00 2017-04-20 08:00:00 10 2017-04-20 17:59:59
9095 2017-04-20 18:00:00 2017-04-20 18:00:00 8 2017-04-21 01:59:59
9096 2017-04-21 02:00:00 2017-04-21 02:00:00 6 2017-04-21 07:59:59
9097 2017-04-21 08:00:00 2017-04-21 08:00:00 10 2017-04-21 17:59:59
9098 2017-04-21 18:00:00 2017-04-21 18:00:00 8 2017-04-22 01:59:59
9099 2017-04-22 02:00:00 2017-04-22 02:00:00 6 2017-04-22 07:59:59
9100 2017-04-22 08:00:00 2017-04-22 08:00:00 10 2017-04-22 17:59:59
9101 2017-04-22 18:00:00 2017-04-22 18:00:00 8 2017-04-23 01:59:59
9102 2017-04-23 02:00:00 2017-04-23 02:00:00 6 2017-04-23 07:59:59
9103 2017-04-23 08:00:00 2017-04-23 08:00:00 10 2017-04-23 17:59:59
9104 2017-04-23 18:00:00 2017-04-23 18:00:00 8 2017-04-24 01:59:59

label on_duty team_A team_B team_C team_D
loc
9084 A True True False False False
9085 B True False True False False
9086 C True False False True False
9087 D True False False False True
9088 A True True False False False
9089 B True False True False False
9090 C True False False True False
9091 D True False False False True
9092 A True True False False False
9093 B True False True False False
9094 C True False False True False
9095 D True False False False True
9096 A True True False False False
9097 B True False True False False
9098 C True False False True False
9099 D True False False False True
9100 A True True False False False
9101 B True False True False False
9102 C True False False True False
9103 D True False False False True
9104 A True True False False False

8.2 Determining deadlines

Source data:

• Project timetable defined in terms of business days allotted to complete each stage of the project.

• Start date of the project.

[6]: project_start = '01 Jan 2018'
project_timetable = pd.DataFrame(data=[

['Development', 14],
['Acceptance', 2],
['Deployment', 3]

],
columns=['Stage', 'Duration'])

project_timetable

8.2. Determining deadlines 65

timeboard Documentation, Release 0.2

[6]: Stage Duration
0 Development 14
1 Acceptance 2
2 Deployment 3

The company works standard business hours. The country is Russia.

Task: Obtain the project deadlines as the calendar dates.

[7]: clnd = clnd_ru
start_dates, end_dates = [], []
for stage_duration in project_timetable['Duration']:

if not start_dates:
start_dates = [clnd(project_start).rollforward()]

else:
start_dates.append(end_dates[-1] + 1)

end_dates.append(start_dates[-1] + (stage_duration - 1))

project_timetable['Start'] = [day.to_timestamp() for day in start_dates]
project_timetable['Deadline'] = [day.to_timestamp() for day in end_dates]

project_timetable

[7]: Stage Duration Start Deadline
0 Development 14 2018-01-09 2018-01-26
1 Acceptance 2 2018-01-29 2018-01-30
2 Deployment 3 2018-01-31 2018-02-02

Analysis

Two timeboard methods are used in this example:

• Timeboard.get_workshift() is called in line 5 disguised as clnd(project_start). It puts the
start date of the project into the context of the timeline of the calendar and returns the corresponding workshift.

• Workshift.rollforward() is called by name in line 5 and by proxy of operator + in lines 7 and 8.

When called without arguments (line 5) rollforward() returns the nearest on-duty workshift. In terms of our
calendar, this means the nearest business day. It may be either project_start date itself or the next working day if
project_start is a weekend or a holiday. In Russia, the first 8 days of January 2017 were holidays, hence, clnd('01
Jan 2017').rollforward() returns 09 Jan 2017.

When called with an integer argument, rollforward(n) moves n days toward the future skipping weekends and
holidays. This is done in lines 7 and 8 where operator + is used as a shortcut for rollforward. For example, note
that rollforward(1) called on Friday, 26 Jan 2017 (the end of Development stage), returns Monday, 29 Jan 2017,
which becomes the start of Acceptance stage.

8.3 Generating shift schedule

Source data: timeboard of all shifts in a call center.

Task: generate the schedule of team’s ‘A’ shifts for the week of 17 April 2017. (This is the same interval which
illustrates the call center’s timeboard in Setting up the calendar section above).

[8]: clnd = clnd_cc
schedule = clnd.schedules['team_A']
period = clnd('17 April 2017', period='W')

(continues on next page)

66 Chapter 8. Common Use Cases

timeboard Documentation, Release 0.2

(continued from previous page)

shifts = [
[ws.start_time, ws.duration, ws.end_time.ceil(clnd.base_unit_freq)]
for ws in period.workshifts(schedule=schedule)

]

pd.DataFrame(shifts, columns=['Start', 'Duration', 'End'])

[8]: Start Duration End
0 2017-04-17 02:00:00 6 2017-04-17 08:00:00
1 2017-04-18 08:00:00 10 2017-04-18 18:00:00
2 2017-04-19 18:00:00 8 2017-04-20 02:00:00
3 2017-04-21 02:00:00 6 2017-04-21 08:00:00
4 2017-04-22 08:00:00 10 2017-04-22 18:00:00
5 2017-04-23 18:00:00 8 2017-04-24 02:00:00

Analysis

• Timeboard.schedules is a dictionary of schedules registered for our timeboard. In line 2 the schedule for
team ‘A’ is retrieved.

• In line 3 clnd('17 April 2017', period='A') is a call of Timeboard.get_interval() re-
turning an interval of shifts which belong to the calendar week 17-23 of April.

• Interval.workshifts() in line 6 returns a generator yielding all on-duty workshifts of the interval. Shifts
are classified as “on duty” or “off duty” according to the schedule which is supplied to the method. By default,
the method uses the default schedule of the timeboard. It would not be suitable for our purpose as under the
default schedule every shift is on duty (the call center is always working). Hence we passed a specific schedule
which selects only shifts labeled with ‘A’.

• start_time, duration, and end_time are workshift attributes. We use pandas.Timestamp.
ceil() to round up the end time of a workshift to the beginning of the next base unit of the timeboard.

8.4 Average annual headcount

The following examples are based on a fictitious company Kings and Queens Ltd.

Source data: staff register for Kings and Queens Ltd. containing for each employee:

• dates of entering and leaving the company

• salary rate

The value of None as the leaving date means that this person is still with the company.

[9]: staff = [
['Doran', '01 Feb 2012', '11 Nov 2017', 700],
['Robert', '10 May 2012', '01 Jan 2017', 1000],
['Joffrey', '03 Jan 2017', '17 Jul 2017', 800],
['Stannis', '02 Jan 2017', '07 Nov 2017', 500],
['Robb', '03 Apr 2017', '28 Apr 2017', 200],
['Daenerys', '18 Apr 2017', None, 500],
['Tommen', '18 Jul 2017', '29 Dec 2017', 800],
['Cersei', '30 Dec 2017', None, 1000],
['Jon', '01 Feb 2018', None, 100]

]
register = pd.DataFrame(data=staff,

columns=['Name', 'Enter', 'Leave', 'Rate']).set_index(
→˓'Name')

(continues on next page)

8.4. Average annual headcount 67

timeboard Documentation, Release 0.2

(continued from previous page)

register

[9]: Enter Leave Rate
Name
Doran 01 Feb 2012 11 Nov 2017 700
Robert 10 May 2012 01 Jan 2017 1000
Joffrey 03 Jan 2017 17 Jul 2017 800
Stannis 02 Jan 2017 07 Nov 2017 500
Robb 03 Apr 2017 28 Apr 2017 200
Daenerys 18 Apr 2017 None 500
Tommen 18 Jul 2017 29 Dec 2017 800
Cersei 30 Dec 2017 None 1000
Jon 01 Feb 2018 None 100

Task: Calculate the average annual headcount of the company in 2017.

As an intermediate step, we will find out what portion of the year 2017 each person has worked for Kings and Queens
Ltd. The data will be stored in the new column ‘Worked_in_2017’.

[10]: clnd = clnd_uk

y2017 = clnd('2017', period='A')
register['Worked_in_2017'] = [

clnd(tenure) / y2017 for tenure in zip(register.Enter, register.Leave)
]

register

[10]: Enter Leave Rate Worked_in_2017
Name
Doran 01 Feb 2012 11 Nov 2017 700 0.869048
Robert 10 May 2012 01 Jan 2017 1000 0.000000
Joffrey 03 Jan 2017 17 Jul 2017 800 0.539683
Stannis 02 Jan 2017 07 Nov 2017 500 0.857143
Robb 03 Apr 2017 28 Apr 2017 200 0.071429
Daenerys 18 Apr 2017 None 500 0.710317
Tommen 18 Jul 2017 29 Dec 2017 800 0.460317
Cersei 30 Dec 2017 None 1000 0.000000
Jon 01 Feb 2018 None 100 0.000000

Analysis

Two timeboard methods are used in this example:

• Timeboard.get_interval() is called in line 3 disguised as clnd('2017', period='A') and in
line 5 as clnd(tenure). The former call returns the interval which corresponds to the calendar year 2017.
The latter call returns an interval which is bounded by the two dates supplied in tenure tuple: the day when the
employee entered the company, and the day when he or she left.

• Interval.what_portion_of() is called by proxy of the division operator / in lines 5. This method
finds out what portion of the second operand (the year 2017) is contained within the first operand (the working
period of a person). Only business days are counted.

Note. For the employees still working at the company, the second element of tenure tuple is None. It means that the
interval returned by clnd(tenure) extends until the last day of the calendar. The end time of the calendar is stored
in clnd.end_time attribute.

The last step in calculating the average annual headcount in 2017 is trivial. We sum up all values in ‘Worked_in_2017’
column.

68 Chapter 8. Common Use Cases

timeboard Documentation, Release 0.2

[11]: headcount = register.Worked_in_2017.sum()
headcount

[11]: 3.5079365079365079

8.5 Calculating wages and salaries payable

Source data:

• Staff register with dates of entering and leaving the company and wage/salary rates.

• Pay period.

Task: For each employee determine the amount of wage/salary payable in the given pay period.

8.5.1 Periodic salary

Suppose salary is paid monthly. Below is the calculation of the salaries payable to the employees of Kings and Queens
Ltd. in April 2017.

[12]: pay_period = clnd('April 2017', period='M')
register['Salary_April'] = [

clnd(tenure) / pay_period for tenure in zip(register.Enter, register.Leave)
] * register.Rate

register

[12]: Enter Leave Rate Worked_in_2017 Salary_April
Name
Doran 01 Feb 2012 11 Nov 2017 700 0.869048 700.0
Robert 10 May 2012 01 Jan 2017 1000 0.000000 0.0
Joffrey 03 Jan 2017 17 Jul 2017 800 0.539683 800.0
Stannis 02 Jan 2017 07 Nov 2017 500 0.857143 500.0
Robb 03 Apr 2017 28 Apr 2017 200 0.071429 200.0
Daenerys 18 Apr 2017 None 500 0.710317 250.0
Tommen 18 Jul 2017 29 Dec 2017 800 0.460317 0.0
Cersei 30 Dec 2017 None 1000 0.000000 0.0
Jon 01 Feb 2018 None 100 0.000000 0.0

Analysis

The same methods are used as with calculating the values for Worked_in_2017 column. Finally, the portion of the
April 2017 taken by the tenure of each employee is multiplied by the salary rate of the employee.

Note that Daenerys has worked only a part of April 2017 - exactly a half (9 of 18 working days), therefore she is paid
proportionally. However, Robb checked out all working days in the months because the first, the second, the 29th and
the 30th of April - all fall on the weekends. Hence, Robb receives the full monthly salary.

8.5.2 Per-shift wage

Suppose that the staff of Kings and Queens Ltd. forms the team ‘A’ of the call center operators. The operators are paid
80 coins per shift. The task is to calculate the wages payable for a week of 17 April 2017.

(For your reference, the schedule of team’s shifts for this week has been generated in an earlier example; it contains 6
shifts.)

8.5. Calculating wages and salaries payable 69

timeboard Documentation, Release 0.2

[13]: clnd = clnd_cc

pay_period = clnd('17 April 2017', period='W')
sdl_a = clnd.schedules['team_A']
shift_rate = 80

register['Wage_shifts'] = [
clnd(tenure).overlap(pay_period).count(schedule=sdl_a) * shift_rate
for tenure in zip(register.Enter, register.Leave)

]

register[['Enter', 'Leave', 'Wage_shifts']]

[13]: Enter Leave Wage_shifts
Name
Doran 01 Feb 2012 11 Nov 2017 480
Robert 10 May 2012 01 Jan 2017 0
Joffrey 03 Jan 2017 17 Jul 2017 480
Stannis 02 Jan 2017 07 Nov 2017 480
Robb 03 Apr 2017 28 Apr 2017 480
Daenerys 18 Apr 2017 None 400
Tommen 18 Jul 2017 29 Dec 2017 0
Cersei 30 Dec 2017 None 0
Jon 01 Feb 2018 None 0

Analysis

Four timeboard methods are used in this example:

• Timeboard.get_interval() is called in lines 3 and 8. clnd('17 April 2017', period='A')
returns an interval of shifts which belong to the calendar week 17-23 of April. clnd(tenure) returns the
period of time when the person has had a job in the company.

• Timeboard.schedules is a dictionary of schedules registered for our timeboard. In line 4 the schedule for
team ‘A’ is retrieved.

• Interval.overlap() is a part of the chain of methods in line 8. It returns the interval that is the intersection
of two intervals: the employee’s tenure and the pay period.

• Interval.count() is the last method called in line 8. It returns the number of on-duty workshifts in the
given interval. Shifts are classified as “on duty” or “off duty” according to the schedule which is supplied to
the method. By default, the method uses the default schedule of the timeboard. It would not be suitable for
our purpose as under the default schedule every shift is on duty (the call center is always working). Hence we
passed the specific schedule which selects only shifts labeled with ‘A’.

8.5.3 Hourly pay

Let us change the pay scheme. Suppose the operators are paid 10 coins per hour. The task is the same: calculate the
wages payable for a week of 17 April 2017.

[14]: clnd = clnd_cc

pay_period = clnd('17 April 2017', period='W')
sdl_a = clnd.schedules['team_A']
hourly_rate = 10

register['Wage_hours'] = [

(continues on next page)

70 Chapter 8. Common Use Cases

timeboard Documentation, Release 0.2

(continued from previous page)

clnd(tenure).overlap(pay_period).worktime(schedule=sdl_a) * hourly_rate
for tenure in zip(register.Enter, register.Leave)

]

register[['Enter', 'Leave', 'Wage_shifts', 'Wage_hours']]

[14]: Enter Leave Wage_shifts Wage_hours
Name
Doran 01 Feb 2012 11 Nov 2017 480 480.0
Robert 10 May 2012 01 Jan 2017 0 0.0
Joffrey 03 Jan 2017 17 Jul 2017 480 480.0
Stannis 02 Jan 2017 07 Nov 2017 480 480.0
Robb 03 Apr 2017 28 Apr 2017 480 480.0
Daenerys 18 Apr 2017 None 400 420.0
Tommen 18 Jul 2017 29 Dec 2017 0 0.0
Cersei 30 Dec 2017 None 0 0.0
Jon 01 Feb 2018 None 0 0.0

Analysis

This snippet is analogous to the previous example. The only change is that in line 8, instead of count(), the last
method called is Interval.worktime(). With this timeboard worktime() returns the total count of hours
in all on-duty workshifts of the interval. As with count(), a schedule is passed to worktime() in order to tell
on-duty shifts from off-duty ones.

8.6 Calculating bonus based on time worked

Source data:

• Staff register with dates of entering and leaving the company.

• Bonus coefficient.

• Bonus increment for each year worked.

The annual bonus is payable to the employees who have stayed in the company for a half of the year or more. The
size of the bonus is the total annual salary multiplied by the bonus coefficient. The coefficient is increased for each
full year spent with the company.

Task: For each employee calculate the bonus payable for the year 2017.

[15]: # Housekeeping: remove the now irrelevant columns from the dataframe.
register.drop(['Wage_shifts', 'Wage_hours'], axis=1, inplace=True)

Let’s return Kings and Queens Ltd. to the standard office calendar.

As an intermediate step, we will find out how many years each employee has spent with the company by the end of
the year 2017. The results will be stored in Total_yrs column.

[16]: clnd = clnd_uk

by_end_of_2017 = clnd((None, '31 Dec 2017'))
register['Total_yrs'] = [

clnd(tenure).overlap(by_end_of_2017).count_periods('A')
for tenure in zip(register.Enter, register.Leave)

]

(continues on next page)

8.6. Calculating bonus based on time worked 71

timeboard Documentation, Release 0.2

(continued from previous page)

register

[16]: Enter Leave Rate Worked_in_2017 Salary_April \
Name
Doran 01 Feb 2012 11 Nov 2017 700 0.869048 700.0
Robert 10 May 2012 01 Jan 2017 1000 0.000000 0.0
Joffrey 03 Jan 2017 17 Jul 2017 800 0.539683 800.0
Stannis 02 Jan 2017 07 Nov 2017 500 0.857143 500.0
Robb 03 Apr 2017 28 Apr 2017 200 0.071429 200.0
Daenerys 18 Apr 2017 None 500 0.710317 250.0
Tommen 18 Jul 2017 29 Dec 2017 800 0.460317 0.0
Cersei 30 Dec 2017 None 1000 0.000000 0.0
Jon 01 Feb 2018 None 100 0.000000 0.0

Total_yrs
Name
Doran 5.785714
Robert 4.646825
Joffrey 0.539683
Stannis 0.857143
Robb 0.071429
Daenerys 0.710317
Tommen 0.460317
Cersei 0.000000
Jon 0.000000

Analysis

This snippet reiterates the composition of the two previous examples. There are two modifications:

• clnd((None, '31 Dec 2017')) returns the interval from the beginning of the calendar to the day of 31
Dec 2017 inclusive. By passing this interval to overlap() called on the tenure in line 5 we effectively drop
the part of the employee’s tenure which extends into 2018 and beyond.

• The last method in the method chain in line 5 is Interval.count_periods() which calculates how many
years fit into the interval. The method can see only business days. This is why the result for Cersei is zero in
spite of the fact that she joined the company in 2017. Both 30 and 31 of December 2017 were days off, so she
checked out no working days in 2017.

The rest of the code invokes the methods already made appearance in the earlier examples. In line 4 we select
employees who are eligible for the bonus. In lines 6-10 their annual salaries for the year 2017 are calculated assuming
that salary is paid monthly. In line 12 the bonus coefficient is incremented by taking into account the total number of
years worked. In line 13 the resulting coefficient is applied to the annual salaries.

[17]: bonus_coefficient = 0.5
bonus_increment_per_year = 0.1

eligibles = register[register.Worked_in_2017 >= 0.5]

y2017 = clnd('2017', period='A')
annual_salary = [

clnd(tenure).overlap(y2017).count_periods('M')
for tenure in zip(eligibles.Enter, eligibles.Leave)

] * eligibles.Rate

register['Bonus'] = (bonus_coefficient*(1 + bonus_increment_per_year*eligibles.
→˓Total_yrs)) \

(continues on next page)

72 Chapter 8. Common Use Cases

timeboard Documentation, Release 0.2

(continued from previous page)

* annual_salary

register.Bonus = register.Bonus.fillna(0).round(2)
register

[17]: Enter Leave Rate Worked_in_2017 Salary_April \
Name
Doran 01 Feb 2012 11 Nov 2017 700 0.869048 700.0
Robert 10 May 2012 01 Jan 2017 1000 0.000000 0.0
Joffrey 03 Jan 2017 17 Jul 2017 800 0.539683 800.0
Stannis 02 Jan 2017 07 Nov 2017 500 0.857143 500.0
Robb 03 Apr 2017 28 Apr 2017 200 0.071429 200.0
Daenerys 18 Apr 2017 None 500 0.710317 250.0
Tommen 18 Jul 2017 29 Dec 2017 800 0.460317 0.0
Cersei 30 Dec 2017 None 1000 0.000000 0.0
Jon 01 Feb 2018 None 100 0.000000 0.0

Total_yrs Bonus
Name
Doran 5.785714 5725.91
Robert 4.646825 0.00
Joffrey 0.539683 2750.36
Stannis 0.857143 2775.97
Robb 0.071429 0.00
Daenerys 0.710317 2275.94
Tommen 0.460317 0.00
Cersei 0.000000 0.00
Jon 0.000000 0.00

8.6. Calculating bonus based on time worked 73

timeboard Documentation, Release 0.2

74 Chapter 8. Common Use Cases

CHAPTER 9

Release Notes

9.1 timeboard 0.2.4

Release date: June 25, 2022

9.1.1 Resolved issues

• Fixed changed in import path for Iterables.

• Tested compatibility with Python 3.9, 3.10.

9.2 timeboard 0.2.3

Release date: May 01, 2020

9.2.1 Resolved issues

• Incompatibility with the breaking API changes introduced in pandas 1.0

9.2.2 Miscellaneous

• Russian business day calendar has been updated for 2020.

9.3 timeboard 0.2.2

Release date: May 01, 2019

75

timeboard Documentation, Release 0.2

9.3.1 Resolved issues

Breaking changes were introduced in pandas versions 0.23 and 0.24

• Pandas 0.23 moved is_subperiod function to another module

• Workaround for pandas issue #26258 (Adding offset to DatetimeIndex is broken)

9.4 timeboard 0.2.1

Release date: January 15, 2019

9.4.1 Miscellaneous

• Business day calendars for RU, UK, and US have been updated

9.5 timeboard 0.2

Release date: March 01, 2018

9.5.1 New features

• Interval.overlap() (also *) - return the interval that is the intersection of two intervals.

• Interval.what_portion_of() (also /) - calculate what portion of the other interval this interval takes
up.

• Interval.workshifts() - return a generator that yields workshifts with the specified duty from the in-
terval.

• Work time calculation: Workshift.worktime(), Interval.worktime()

9.5.2 Miscellaneous

• Performance: building any practical timeboard should take a fraction of a second.

• Documentation: added Common Use Cases section. It is also available as a jupyter notebook.

9.6 timeboard 0.1

Release date: February 01, 2018

This is the first release.

• genindex

Downloads:

• jupyter notebook with common use cases

Links:

76 Chapter 9. Release Notes

timeboard Documentation, Release 0.2

• Github: https://github.com/mmamaev/timeboard

• PyPI: https://pypi.python.org/pypi/timeboard

• Documentation (this page): https://timeboard.readthedocs.io/

9.6. timeboard 0.1 77

https://github.com/mmamaev/timeboard
https://pypi.python.org/pypi/timeboard
https://timeboard.readthedocs.io/

	About timeboard
	Installation
	Quick Start Guide
	Data Model
	Making a Timeboard
	Using Preconfigured Calendars
	Doing Calculations
	Common Use Cases
	Release Notes

